閆 喆, 姚 芳, 張麗萍, 郝 軍, 吳海江, 段惠軍△
(河北醫科大學1第二醫院腎內科,2病理教研室,河北 石家莊 050000)
ILK siRNA對高糖刺激的人腎小管上皮細胞GSK-3β及β-catenin表達的影響*
閆 喆1,2, 姚 芳2, 張麗萍1, 郝 軍2, 吳海江2, 段惠軍2△
(河北醫科大學1第二醫院腎內科,2病理教研室,河北 石家莊 050000)
目的:探討高糖誘導腎小管上皮細胞轉分化中整合素連接激酶小干擾RNA(ILK siRNA)對糖原合成酶激酶3β(GSK-3β)磷酸化和β-連環蛋白(β-catenin)核內表達的影響及意義 。方法:體外培養人近端腎小管上皮細胞系HKC,分為正常對照組(NG)、高糖組(HG)、高糖+陰性轉染對照組(HG+HK)和高糖+ILK siRNA組(HG+ILK siRNA)。倒置熒光顯微鏡下觀察綠色熒光蛋白表達。RT-PCR及Western blotting檢測ILK mRNA及蛋白表達水平;免疫細胞化學檢測磷酸化GSK-3β(p-GSK-3β)和β-catenin表達。Western blotting檢測總GSK-3β、p-GSK-3β、核β-catenin、總β-catenin、E-鈣黏蛋白(E-cadherin)和α-平滑肌肌動蛋白(α-SMA)的表達水平。結果:(1)倒置熒光顯微鏡下可見綠色熒光蛋白表達,證實構建的siRNA重組質粒成功轉染HKC細胞;(2)與HG和HG+ HK組相比,HG+ILK siRNA組ILK mRNA及蛋白水平下降,但較NG組表達仍高;(3)HG+ILK siRNA組ILK基因沉默后,p-GSK-3β與核β-catenin蛋白表達較HG及HG+HK組均下降,但較NG組表達仍高。而總GSK-3β與總β-catenin在各組表達無明顯差異。結論:ILK、GSK-3β和β-catenin可能參與了高糖介導的腎小管上皮細胞轉分化過程。ILK可能通過調節Wnt/β-catenin途徑下游效應蛋白GSK-3β和β-catenin的表達而促使腎小管上皮細胞轉分化。
糖尿病腎病;上皮-間充質轉化;整合素連接激酶;小干擾RNA;糖原合成酶激酶3β;β-連環蛋白
近年研究發現腎小管間質纖維化程度與糖尿病腎病腎功能下降密切相關[1]。腎小管上皮細胞轉分化是腎小管間質纖維化的重要因素。整合素連接激酶(integrin-linked kinase,ILK)是腎小管間質損傷及纖維化最強誘導因子之一[2]。有關腫瘤研究表明ILK可通過抑制糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK-3β)活性、影響β-連環蛋白(βcatenin)核聚集而發揮其生物學效應[3]。而GSK-3β與β-catenin均為Wnt/β-catenin途徑下游效應蛋白。在腎小管上皮細胞轉分化中 ILK與Wnt/β-catenin途徑的關系尚未見報道。本研究利用ILK siRNA轉染人腎小管上皮細胞沉默ILK基因,觀察ILK、GSK-3β和β-catenin表達水平變化,以探討三者在糖尿病腎小管間質纖維化中的作用及相互關系。
1 材料
人近端腎小管上皮細胞系HKC(解放軍總醫院陳香美教授惠贈)。D-葡萄糖 (Sigma),小鼠抗ILK單克隆抗體、兔抗GSK-3β多克隆抗體、小鼠抗βcatenin單克隆抗體和兔抗 E-cadherin多克隆抗體(Santa Cruz)。兔抗p-GSK-3β多克隆抗體(Cell Signalling),小鼠抗α-SMA單克隆抗體(Abcam)。RTPCR試劑(Promega),辣根過氧化物酶標記羊抗兔和羊抗小鼠IgG購自北京中杉金橋公司。核蛋白內參照兔抗組蛋白H1多克隆抗體購自博士德生物工程有限公司。pGenesil-1.1-HK質粒、pGenesil-1.1-ILK siRNA質粒和帶有pGenesil-1.1-ILK siRNA質粒的DH5α大腸桿菌菌株(武漢晶賽公司)
2 方法
2.1 ILK siRNA轉染及篩選 質粒pGenesil-1.1-ILK siRNA-1、pGenesil-1.1-ILK siRNA-2和pGenesil-1.1-ILK siRNA-3,是針對ILK基因(NM_001014795) 3個不同位點設計的帶短發夾結構的siRNA,經酶切鑒定及測序證明質粒均符合設計要求。ILK siRNA-1:5’-GGGGCACGGATCAATGTAA-3’,ILK siRNA-2: 5’-GTACAAGGCAGACATCAAT-3’,ILK siRNA-3: 5’-GACATGACTGCCCGAATTA-3’。HKC細胞共分6組:正常對照(normal glucose,NG)組、高糖(high glucose,HG)組、高糖+陰性轉染對照(HG+pGenesil-1.1-HK,HG+HK)組、高糖+pGenesil-1.1-ILK siRNA-1(HG+ILK siRNA-1)組、高糖+pGenesil-1.1-ILK siRNA-2(HG+ILK siRNA-2)組和高糖 + pGenesil-1.1-ILK siRNA-3(HG+ILK siRNA-3)組。
2.2 質粒的細胞轉染 脂質體轉染法(按照LipofectamineTM2000說明書步驟):HKC細胞按 1× 108/L濃度傳于6孔細胞培養板,待細胞長至細胞板80%時棄培養基,每孔中加入DMEM無血清培養液。將10 μL LipofectamineTM2000用 250 μL無血清DMEM稀釋,混勻后室溫下孵育5 min。取4個離心管中各加入250 μL無血清DMEM培養液,分別加入質粒 pGenesil-1.1-HK、pGenesil-1.1-ILK siRNA-1、pGenesil-1.1-ILK siRNA-2和 pGenesil-1.1-ILK siRNA-3各 4 μg混勻。將質粒加入 LipofectamineTM2000稀釋液中,質粒與脂質體比例為1∶2.5混勻,室溫下孵育20 min。將上述DNA-脂質體混合物分別加入6孔細胞培養板中,輕搖培養板,充分混勻。37℃、5%CO2培養箱中孵育6 h。6 h后棄培養液,換10%無雙抗正常或高糖DMEM培養液繼續培養48 h,熒光倒置顯微鏡下觀察綠色熒光蛋白(green fluorescent protein,GFP)的表達,計算轉染效率。提取蛋白及RNA。
2.3 RT-PCR和Western blotting 檢測轉染細胞中ILK mRNA及蛋白表達,篩選敲低效果最明顯的ILK-siRNA。
2.3.1 RT-PCR 按照TRIzol試劑說明書提取總RNA,利用Primers軟件設計目的基因引物,由上海生工公司合成。ILK上、下游引物分別為5’-ACT GGA TGC CGT ATG GAT-3’和5’-TGT CTG CTG AGC GTC TGT-3’,擴增片段為315 bp;GAPDH上、下游引物分別為5’-TAT CGG ACG CCT GGT TAC-3’和5’-CTG TGC CGT TGA ACT TGC-3’,擴增片段為140 bp;擴增條件為:預變性94℃ 3 min,進入循環,95℃ 45 s,54℃ 80 s,72℃ 60 s,32個循環后72℃8 min。將PCR產物在1.5%瓊脂糖凝膠中進行電泳,置于凝膠圖像分析系統(UVP公司)進行吸光度掃描,用目的基因的吸光度與GAPDH吸光度的比值代表目的基因的相對表達含量。
2.3.2 Western blotting PBS洗2遍細胞,加入細胞裂解液,冰浴1 h,4℃、12 000 r/min離心20 min,提取細胞總蛋白。取細胞裂解蛋白50 μg,經 SDSPAGE凝膠電泳后電轉移至PVDF膜;5%脫脂奶粉封閉PVDF膜2 h,加入小鼠抗ILK單克隆抗體4℃過夜,洗膜后加辣根過氧化物酶標記的抗小鼠抗體(1∶5 000稀釋),37℃孵育2 h;洗膜后加ECL試劑,然后將PVDF膜放入X光片暗盒,壓片,顯影,定影。用UVP公司LabWorks 4.5軟件對Western blotting條帶進行定量分析。
2.4 根據篩選結果調整細胞分組 正常對照(NG,葡萄糖濃度5.5 mmol/L)組、高糖(HG,葡萄糖濃度30 mmol/L)組、高糖+pGenesil-1.1-HK(HG+HK)組和高糖+pGenesil-1.1-ILK siRNA-3(HG+ILK siRNA-3)組。
2.4.1 免疫細胞化學法檢測轉染細胞p-GSK-3β和β-catenin表達 按實驗分組刺激48 h。2%的多聚甲醛固定細胞,1%H2O2甲醇室溫孵育滅活內源性過氧化物酶,0.1%Triton X-100孵育20 min,10%正常山羊血清封閉。加入兔抗p-GSK-3β多克隆抗體(1∶50)和小鼠抗β-catenin單克隆抗體(1∶50),PBS為陰性對照,4℃過夜。滴加辣根過氧化物酶標記的山羊抗小鼠、羊抗兔抗體(1∶50),DAB顯色。顯微鏡觀察、拍照,采用HPIAS-1000彩色病理圖文系統進行定量分析。p-GSK-3β以胞漿染色為陽性,選取5個不同視野(×200),計算單位面積陽性染色區域平均積分吸光度。β-catenin計數陽性細胞核占一個視野總細胞核的百分比。
2.4.2 Western blotting檢測轉染48 h細胞中總GSK-3β、p-GSK-3β、β-catenin、E-cadherin和 α-SMA表達 方法同上,核蛋白依據試劑盒說明書提取。
3 統計學處理
數據用均數±標準差(mean±SD)表示,各組間比較采用單因素方差分析,用SPSS 11.5統計軟件統計,以P<0.05為差異有統計學意義。
1 轉染HKC后綠色熒光蛋白表達
pGenesil-1.1-ILK siRNA-1、pGenesil-1.1-ILK siRNA-2和pGenesil-1.1-ILK siRNA-3轉染HKC細胞24 h倒置熒光顯微鏡下可見綠色熒光蛋白表達,48 h表達量明顯增多。這證實構建的pGenesil-1.1-ILK siRNA-1、pGenesil-1.1-ILK siRNA-2和pGenesil-1.1-ILK siRNA-3重組質粒成功轉染HKC細胞并能夠表達綠色熒光蛋白,轉染效率可達60~70%,見圖1。

Figure 1.The fluorescent image of GFP protein expression in HKC cells transfected with ILK siRNA(×200).A:pGenesil-1.1-ILK siRNA-1;B:pGenesil-1.1-ILK siRNA-2;C:pGenesil-1.1-ILK siRNA-3.圖1 腎小管上皮細胞轉染ILK siRNA后綠色熒光蛋白的表達
2HKC轉染3個ILK siRNA后ILK mRNA及蛋白的表達
2.1 RT-PCR檢測結果 與 HG+HK組相比,pGenesil-1.1-ILK siRNA-1、pGenesil-1.1-ILK siRNA-2和pGenesil-1.1-ILK siRNA-3質粒轉染組可見 ILK mRNA水平下降,分別減少36.47%、25.11%及43.15%,但較NG組表達仍高,見圖2。這一結果表明,pGenesil-1.1-ILK siRNA-3質粒轉染組ILK mRNA水平下降最為明顯。
2.2 Western blotting檢測結果 pGenesil-1.1-ILK siRNA-1、pGenesil-1.1-ILK siRNA-2、pGenesil-1.1-ILK siRNA-3質粒轉染均可引起ILK蛋白表達下降,分別比 HG+HK組減少 41.59%、29.78%和56.12%,但較NG組表達仍高,見圖3。這一結果表明,pGenesil-1.1-ILK siRNA-3質粒轉染組ILK蛋白水平下降最為明顯。

Figure 2.ILK mRNA expression in different groups detected by RT-PCR.1:NG group;2:HG group;3:HG+ pGenesil-1.1-HK group;4:HG+pGenesil-1.1-ILK siRNA-1 group;5:HG+pGenesil-1.1-ILK siRNA-2 group;6:HG+pGenesil-1.1-ILK siRNA-3 group.Mean±SD.n=6.*P<0.05 vs 1;#P<0.05 vs 2 or 3.圖2 各組腎小管上皮細胞ILK mRNA表達

Figure 3.ILK protein expression in different groups detected by Western blotting.1:NG group;2:HG group;3:HG +pGenesil-1.1-HK group;4:HG+pGenesil-1.1-ILK siRNA-1 group;5:HG+pGenesil-1.1-ILK siRNA-2 group;6:HG+pGenesil-1.1-ILK siRNA-3 group.Mean±SD.n=6.*P<0.05 vs 1;#P<0.05 vs 2 or 3.圖3 各組腎小管上皮細胞ILK蛋白表達
3 轉染最佳敲低效果pGenesil-1.1-ILK siRNA-3后p-GSK-3β和β-catenin的表達
3.1 免疫細胞化學結果 pGenesil-1.1-ILK siRNA-3轉染HKC后,p-GSK-3β和核β-catenin表達比HG及HG+HK組表達下降,但較NG組表達仍高,見圖4、5和表1。

Figure 4.Immunocytochemistry of p-GSK-3β in HKC cells (×400).A:NG group;B:HG group;C:HG+ pGenesil-1.1-HK group;D:HG+pGenesil-1.1-ILK siRNA-3 group.圖4 各組腎小管上皮細胞p-GSK-3β表達

Figure 5.Immunocytochemistry of nuclear β-catenin in HKC cells(×400).A:NG group;B:HG group;C:HG +pGenesil-1.1-HK group;D:HG+pGenesil-1.1-ILK siRNA-3 group.圖5 各組腎小管上皮細胞核內β-catenin表達
3.2 Western blotting結果 pGenesil-1.1-ILK siRNA-3轉染HKC細胞后p-GSK-3β、核β-catenin及α-SMA均較HG及HG+HK組表達下降,但較NG組表達仍高。總GSK-3β與總β-catenin在各組表達無明顯差異。E-cadherin在HG+ILK siRNA-3組的表達較HG及HG+HK組有所升高,但較NG組表達仍低,見圖6。

表1 免疫組化檢測HKC細胞轉染ILK siRNA后p-GSK-3β及核β-catenin蛋白表達Table 1.The expression of p-GSK-3β and nuclear β-catenin in HKC cells transfected with ILK siRNA detected by immunocytochemistry(Mean±SD.n=6)
腎小管間質纖維化與腎功能下降密切相關[4]。ILK與慢性腎臟病腎小球硬化、腎間質纖維化以及腎小管上皮細胞轉分化等關系密切[5-6]。ILK是1996年Hammigan以整合素胞漿域為誘餌,運用酵母雙雜交系統發現的一種細胞內的絲氨酸/蘇氨酸蛋白激酶,是細胞-細胞外基質連接處的重要分子骨架,對細胞外基質(extracellular matrix,ECM)具有調控作用[7]。ILK可通過多種途徑調節上皮細胞向間充質轉化(epithelial-mesenchymal transition,EMT)過程。過度表達的外源性ILK導致上皮細胞E-鈣黏蛋白的丟失及α-平滑肌肌動蛋白的表達;導致纖維連接蛋白的表達和細胞外積聚;引起基質金屬蛋白酶MMP-2的表達和分泌增加,并增加細胞遷移和侵襲力等[8-9]。

Figure 6.The expression of p-GSK-3β,total GSK-3β,nuclear β-catenin,total β-catenin,E-cadherin and α-SMA in HKC cells transfected with ILK siRNA.Mean±SD.n=6.*P<0.05;**P<0.01 vs NG;#P<0.05 vs HG or HG+HK.圖6 各組腎小管上皮細胞p-GSK-3β、總GSK-3β、核β-catenin、總β-catenin、E-cadherin和α-SMA表達
GSK-3β與β-catenin均為Wnt/β-catenin途徑下游效應蛋白。在Wnt/β-catenin信號途徑未激活情況下,GSK-3β可促使該途徑關鍵信號分子β-catenin泛素化后降解。Wnt/β-catenin途徑激活后,GSK-3β磷酸化而活性降低,β-catenin降解減少,打破了其原有的出入核平衡,細胞核內的β-catenin大大增加,與轉錄因子淋巴樣增強子結合因子1/T細胞因子(lymphoid enhancer-binding factor 1/T-cell factor,LEF1/TCF)家族成員結合,促進 EMT的發生[10]。Wnt/β-catenin信號途徑不僅參與了腎臟的發育,在腎小球足細胞損傷中也發揮了作用[11]。
有研究表明ILK通過抑制GSK-3β活性而激活Wnt信號途徑,對于ILK與Wnt/β-catenin信號途徑關系的研究多集中于腫瘤的發病與進展中,ILK的過度表達可直接磷酸化GSK-3β(Ser9)而使其活性降低,使β-catenin降解減少而在胞漿與胞核內聚集,誘導靶基因的表達,促使EMT發生,增強了腫瘤細胞的遷移力與侵襲力[12]。而且,ILK可調控胞核內βcatenin/TCF/LEF1復合體的轉錄活性,使細胞間黏附及細胞與細胞外基質相互作用發生改變。同時,ILK可下調E-鈣黏蛋白轉錄表達也促使β-catenin由胞膜向胞核的重新分布[13-14]。因而ILK與Wnt信號途徑有交叉作用。但在腎小管轉分化及腎纖維化過程中二者的關系尚需進一步研究。本研究利用ILK siRNA轉染人腎小管上皮細胞沉默ILK基因,發現HKC細胞轉染ILK siRNA后,ILK mRNA及蛋白表達均降低。GSK-3β磷酸化水平及胞核β-catenin表達較未轉染高糖組和陰性轉染對照組均降低。ILK siRNA能夠逆轉由高糖刺激的E-cadherin表達降低,同時下調α-SMA表達。據此認為ILK基因沉默后,改變了Wnt途徑下游因子GSK-3β和β-catenin的表達活性,一定程度上阻止了高糖誘導的腎小管細胞轉分化過程。
綜上所述,ILK可能通過調節Wnt/β-catenin途徑下游因子GSK-3β及β-catenin的表達,參與腎小管上皮細胞轉分化過程。本研究為進一步控制糖尿病腎病腎小管間質纖維化進展提供了新的思路。
[1]Hills CE,Squires PE.The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy[J].Cytokine Growth Factor Rev,2011,22(3):131-139.
[2]Yan Q,Sui W,Xie S,et al.Expression and role of integrin-linked kinase and collagen IV in human renal allografts with interstitial fibrosis and tubular atrophy[J].Transpl Immunol,2010,23(1-2):1-5.
[3]Bagnato A,Rosanò L.Epithelial-mesenchymal transition in ovarian cancer progression:a crucial role for the endothelin axis[J].Cells Tissues Organs,2007,185(1-3):85-94.
[4]Liu Y.New insights into epithelial-mesenchymal transition in kidney fibrosis[J].J Am Soc Nephrol,2010,21(2): 212-222.
[5]Li Y,Tan X,Dai C,et al.Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis[J].J Am Soc Nephrol,2009,20(9):1907-1918.
[6]戴厚永,鄭 敏,湯日寧,等.厄貝沙坦對早期糖尿病腎病大鼠足細胞損傷及整合素連接激酶的影響[J].中國病理生理雜志,2010,26(11):2175-2179.
[7]Boulter E,Van Obberghen-Schilling E.Integrin-linked kinase and its partners:a modular platform regulating cellmatrix adhesion dynamics and cytoskeletal organization[J].Eur J Cell Biol,2006,85(3-4):255-263.
[8]McPhee TR,McDonald PC,Oloumi A,et al.Integrinlinked kinase regulates E-cadherin expression through PARP-1[J].Dev Dyn,2008,237(10):2737-2747.
[9]Cortez V,Nair BC,Chakravarty D,et al.Integrin-linked kinase 1:role in hormonal cancer progression[J].Front Biosci(Schol Ed),2011,3:788-796.
[10]Saito-Diaz K,Chen TW,Wang X,et al.The way Wnt works:components and mechanism[J].Growth Factors,2013,31(1):1-31.
[11]周 靜,袁偉杰,謝院生,等.siRNA沉默WT1對小鼠足細胞Wnt/β-catenin和nephrin表達的影響[J].中國病理生理雜志,2013,29(2):219-224.
[12]Joshi MB,Ivanov D,Philippova M,et al.Integrin-linked kinase is an essential mediator for T-cadherin-dependent signaling via Akt and GSK3β in endothelial cells[J].FASEB J,2007,21(12):3083-3095.
[13]Bravou V,Klironomos G,Papadaki E,et al.ILK over-expression in human colon cancer progression correlates with activation of beta-catenin,down-regulation of E-cadherin and activation of the Akt-FKHR pathway[J].J Pathol,2006,208(1):91-99.
[14]Engelman M de F,Grande RM,Naves MA,et al.Integrin-linked kinase(ILK)expression correlates with tumor severity in clear cell renal carcinoma[J].Pathol Oncol Res,2013,19(1):27-33.
Role of ILK siRNA on expression of GSK-3β and β-catenin in human tubular epithelial cells stimulated by high glucose
YAN Zhe1,2,YAO Fang2,ZHANG Li-ping1,HAO Jun2,WU Hai-jiang2,DUAN Huijun2
(1Department of Nephrology,The Second Hospital,2Department of Pathology,Hebei Medical University,Shijiazhuang 050000,China.E-mail:duanhj999@163.com)
AIM:To investigate the effects of siRNA targeting integrin-linked kinase(ILK)on the expression of glycogen synthase kinase 3β(GSK-3β)and β-catenin during epithelial-mesenchymal transition(EMT)in human kidney proximal tubular epithelial cell line HKC induced by high glucose.METHODS:HKC cells were divided into 4 groups:normal glucose(NG)group,high glucose(HG)group,HG+HK(a vector containing the non-specific siRNA designed as negative control)group and HG+ILK siRNA group.The inverted fluorescence microscope was used to examine the expression of green fluorescent protein(GFP).The expression of ILK at mRNA and protein levels was detected by RTPCR and Western blotting.The expression of p-GSK-3β and β-catenin was observed by immunocytochemical staining.The protein expression of total GSK-3β,p-GSK-3β,nuclear β-catenin,total β-catenin,E-cadherin and α-smooth muscle actin (α-SMA)was measured by Western blotting.RESULTS:GFP was observed in HKC cells,indicating that the transfection was successful.Both the protein and mRNA of ILK were down-regulated in HG+ILK siRNA group compared with HG group and HG+HK group,but still higher than those in NG group.Silencing of ILK down-regulated the expression of p-GSK-3β and nuclear β-catenin.No difference of total GSK-3β or total β-catenin was observed among the 4 groups.CONCLUSION:These data support a functional role of ILK,GSK-3β and β-catenin in tubular EMT induced by high glucose.ILK may promote tubular EMT by regulating the activity of GSK-3β and β-catenin,the downstream effectors of the Wnt/βcatenin pathway.
Diabetic nephropathies;Epithelial-mesenchymal transition;Integrin-linked kinase;Small interfering RNA;Glycogen synthase kinase 3β;β-catenin
R363
A
10.3969/j.issn.1000-4718.2014.03.020
1000-4718(2014)03-0503-06
2013-10-10
2014-01-06
河北省衛生廳課題(No.08282)
△通訊作者Tel:0311-86265724;E-mail:duanhj999@163.com