999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

W01,p(x)Versus C1Local Minimizers for a Functional with Critical Growth

2014-05-05 01:24:18SAOUDI

SAOUDI K.

College of arts and sciences at Nayriya,university of Dammam 31441 Dammam, Kingdom of Saudi Arabia.

W01,p(x)Versus C1Local Minimizers for a Functional with Critical Growth

SAOUDI K.?

College of arts and sciences at Nayriya,university of Dammam 31441 Dammam, Kingdom of Saudi Arabia.

Received 28 September 2012;Accepted 24 January 2014

AMS Subject Classifications:35J65,35J20,35J70

Chinese Library Classifications:O175.8,O175.25

p(x)-Laplacian equation;variational methods;local minimizer.

1 Introduction

The assumptions on the source terms f is as follows:

(f1)f:×R→R is a measurable function with respect to the first argument and continuous differentiable with respect to the second argument for a.e.x∈?.Moreover, f(x,0)=0 for(x,s)×R+.

The operator Δp(x)u:=divis called p(x)-Laplace where p is a continuous non-constant function.This differential operator is a natural generalization of the p-Laplace operator,where p>1 is a real constant.However,the p(x)-Laplace operator possesses more complicated nonlinearity than p-Laplace operator,due to the fact that Δp(x)is not homogeneous.Our aim in this paper is to show the following

We remark that u0satisfies in the distributions sense the Euler-Lagrange equation associated to I,that is

with u=v=0 on??,where g,h∈L∞(?)are such that 0≤g<h pointwise everywhere in ?.If

where n is the inward unit normal on??.Then,the following strong comparison principle holds:

Equation(P)appears in several models:electrorheological fluids,image processing, flow in porous media,calculus of variations,nonlinear elasticity theory,heterogeneous porous media models(see[8–10],Zhikov[11,12]).The study of such problems is a new and interesting topic some results can be found[8,9,12].

2 Proof of Theorem 1.1

We first deal with the subcritical case and then give the additional arguments to prove the result when q(x)=p?(x)-1.Case 1:r(x)<p?(x)-1.We adapt the arguments in[16]. Let q(x)∈(r(x),p?(x)-1),define

and

We consider the following constraint minimization problem:

We now consider the following two cases:

1)Let K(v?)<?.Then v?is also a local minimizer of I.Hence,v?is a solution of the problem(P).Therefore,due to the growth conditions on f and the smoothness of ? we have that(see[19,Theorem 1.2]for the detail)

for some α∈(0,1),and as ?→0+

which contradicts the fact that u0is a local minimizer in C1(?)∩C0(?).

Now,we deal with the second case:2)K(v?)=?:In this case,from the Lagrange multiplier rule we have

and then for t small we have

This contradicts the fact that v?is a global minimizer of I in S?.It follows thatμ?≤0.We deal now with two following cases:

case(i):μ?∈(-1,0).In this case,using

Now,sinceμ?≤0,there exists M,c>0 independent of ? such that

It follows from[20,Theorem 4.1]that v?∈L∞(?)and|v?|L∞(?)≤c because||u?||W1,p(x)(?)is bounded uniformly for some ?∈(0,1),where c is a positive constant independen0t of ?. Hence,|v?|C1,α(?)≤c for some α∈(0,1)by using[19,Theorem 1.2].Then we conclude as above.

Let us consider the case(ii):μ?≤-1.

Furthermore,there exists a number M>0,independent of ?,such that for

we have

Similarly,Z

Now,subtracting(2.6)with w=(v?-u)|v?-u0|β-1,where β≥1,we obtain

Using the bounds about v?,u0and the H¨older inequality we get

where C does not depend on β and ?.Passing to the limit β→+∞this leads to

So the right-hand side of(2.3)is uniformly bounded in L∞(?)from which as in the first case,we obtain that v?,(0<?≤1)is bounded in C1,α(?)independentlyof ?.Finally,using Ascoli-Arzela Theorem we find a sequence ?n→0+such that

It follows that for ?>0 sufficiently small,

which contradicts the fact that u0is a local minimizer of I for the C1(?)∩C0(?)topology. The proof of the Theorem 1.1 in the subcritical case is now complete.

and

We now consider the truncated functional

It follows that for each ?>0,there is some j?(with j?→+∞as ?→0+)such that Ijε(v?)<I(u0).On the other hand,since fj?has subcritical growth and since for some constants c,c1,c3independent of ?,

Then,it follows that for ?>0 sufficiently small,

It remains to prove theClaim.For this purpose we write the Euler equation satisfied by u?:

whereμ?is a Lagrangemultiplier associated to theconstraint||u?-u0||Lp?(x)(?)≤?.Taking u0-u?as testing function in(2.12)and using the minimizing property of u?,one gets μ?≤0.

We again distinguish between the following two cases:

InCase(i)from the Euler equation:

satisfied by u?we get that

for some D>0 independent of ?.Now using the Moser iterations as in Zhang-Liu[22], we get that{u?}are bounded in Lβp?(x)(?)for some β>1 independently of ?.Then, using[20,Theorem 4.1]that u?∈L∞(?)and|u?|L∞(?)≤c,where c is a positive constant independent of ?.Hence,|u?|C1,α(?)≤c for some α∈(0,1)by using[19,Theorem 1.2].This proves the Claim in the case(i).

Let us consider now theCase(ii):

Again as in the subcritical case,there exists a number M>0,independent of ?,such that for

Taking now(u?-M)+as a testing function in(2.12),one concludes by the weak comparison principle that u?(x)≤M in ?.So u?remains bounded in L∞(?)as ?→0.

Now,subtracting(2.12)with w=(u?-u)|u?-u0|β-1,where β≥1,we obtain

Using the bounds about u?,u0and the H¨older inequality we get

where C does not depend on β and ?.Passing to the limit β→+∞this leads to

So the right-hand side of(2.12)is uniformly bounded in L∞(?)from which as in the first case,from[19,Theorem 1.2]we obtain that u?,(0<?≤1)is bounded in C1,α(?) independently of ?.This concludes the proof of the Claim in case(ii).

Acknowledgments

The author would like to thank the anonymous referees for their carefully reading this paper and their useful comments.

[1]Brezis H.,Nirenberg L.,Minima locaux relatifsC1et H1.C.R.Acad.Sci.Paris sr.I Math., 317(1993),465-472.

[2]Ambrosetti A.,Brezis H.and Cerami G.,Combined effects of concave and convex nonlinearities in some elliptic problems.J.Funct.Anal.,122(1994),519-543.

[5]Ambrosetti A.,Rabinowitz P.H.,Dual variational methods in critical point theory and applications.J.Funct.Anal.,14(1973),349-381.

[7]Fan X.L.,On the sub-supersolution method for p(x)-Laplacian equations.J.Math.Anal. Appl.,330(1)(2007),665-682.

[8]Acerbi E.,Mingione G.,Regularity results for a class of functionals with nonstandard growth.Arch.Rational Mech.Anal.,156(2001),121-140.

[9]Diening L.,Theorical and Numerical Results for Electrorheological Fluids.Ph.D.thesis, University of Freiburg,Germany,2002.

[11]Zhikov V.V.,Averaging of functionals of the calculus of variations and elasticity theory. Math.USSR.Izv.,29(1987),33-66.

[12]Zhikov V.V.,Meyers-type estimates for solving the nonlinear Stokes system.Differential Equations,33(1997),107-114.

[14]Lieberman G.,Boundary regularity for solutions of degenerate elliptic equations.Nonl. Anal.,12(1988),1203-1219.

[15]DiBenedetto E.,C1+αlocal regularity of weak solutions of degenerate elliptic equations. Nonl.Anal.,7(8)(1983),827-850.

[16]Brock F.,Iturraga L.and Ubilla P.,A multiplicity result for the p-Laplacien involving a parameter.Ann.Henri Poincar,9(7)(2008),1371-1386.

[17]Figueiredo D.G.De,Gossez J.P.and Ubilla P.,Local“superlinearity”and“sublinearity”for the p-Laplacian.J.Funct.Anal.,257(3)(2009),721-752.

[18]Giacomoni J.,Prashanth S.and Sreenadh K.,W1,Nversus C1local minimizers for elliptic functionals with critical growth in RN.C.R.Math.Acad.Sci.Paris,347(5-6)(2009),255-260. [19]Fan X.L.,Global C1,αregularity for variable exponent elliptic equations in divergence form. J.Differential Equations,235(2)(2007),397-417.

[20]Fan X.L.,Zhao D.,Class of De Giorgi type and Hlder continuity.Nonl.Anal.,36(1996), 295-318.

[21]Fan X.L.,Zhao Y.Z.and Zhang Q.H.,A strong maximum principle for p(x)-Laplace equations.Chinese J.Contemp.Math.,24(3)(2003),277-282.

[22]Zhang X.,Liu X.,The local boundedness and Harnack inequality of p(x)-Laplace equation. J.Math.Anal.Appl.,332(1)(2007),209-218.

10.4208/jpde.v27.n2.2 June 2014

?Corresponding author.Email address:kasaoudi@gmail.com(K.Saoudi)

主站蜘蛛池模板: 伊人久久大香线蕉综合影视| 亚洲男人的天堂久久香蕉网| 亚洲精品国产成人7777| 亚洲精品视频免费| 日韩小视频在线播放| 国产色爱av资源综合区| 中日韩一区二区三区中文免费视频| 国产免费精彩视频| 亚洲精品国偷自产在线91正片| 免费看黄片一区二区三区| 国产精品福利导航| 国产欧美精品一区二区| 欧美成人综合在线| 久久人午夜亚洲精品无码区| 国产一区亚洲一区| 久久不卡精品| 久久久亚洲色| 97色伦色在线综合视频| 正在播放久久| 国产成人高清精品免费| 最新国产麻豆aⅴ精品无| 色首页AV在线| 国产欧美日韩视频怡春院| 国产精品香蕉在线观看不卡| 日韩精品高清自在线| 色婷婷成人| 无码日韩精品91超碰| 国产综合欧美| 欧美日韩国产精品va| 亚洲欧美激情小说另类| 日韩黄色大片免费看| 久久黄色一级视频| 91最新精品视频发布页| 大香伊人久久| 精品一区二区久久久久网站| 成人小视频网| 国产免费一级精品视频| 精品少妇人妻一区二区| 国产精品福利社| 日韩二区三区| 九九香蕉视频| 露脸一二三区国语对白| 一级一级特黄女人精品毛片| 国产丝袜一区二区三区视频免下载 | 国产一级毛片高清完整视频版| 久久国产精品夜色| 91亚洲影院| 国产成年女人特黄特色毛片免| 亚洲国产成人精品无码区性色| 婷婷伊人五月| 中文字幕天无码久久精品视频免费| 性激烈欧美三级在线播放| 国产精品对白刺激| 国产超薄肉色丝袜网站| 中文字幕 日韩 欧美| 一本大道无码日韩精品影视| 另类专区亚洲| 99热这里只有精品2| 亚洲欧美日韩色图| 日本a∨在线观看| 亚洲国产精品美女| 亚洲swag精品自拍一区| 国国产a国产片免费麻豆| 国产一区二区三区免费观看| 2020久久国产综合精品swag| 内射人妻无套中出无码| 亚洲无码37.| 国产99久久亚洲综合精品西瓜tv| 亚洲欧美一区二区三区蜜芽| 国产亚洲欧美另类一区二区| 四虎成人在线视频| 国产91蝌蚪窝| 久久亚洲日本不卡一区二区| 2020国产免费久久精品99| 麻豆a级片| 波多野结衣在线一区二区| 久久网欧美| 精品久久久久久成人AV| 婷婷色一二三区波多野衣| 欧美激情二区三区| 天天综合网色| 亚洲第一极品精品无码|