999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Global Well-Posedness of Classical Solutions with LargeInitialDatatotheTwo-DimensionalIsentropic Compressible Navier-Stokes Equations

2014-05-03 12:48:18ZHANGPeixinDENGXuemeiandZHAOJunning1SchoolofMathematicalSciencesHuaqiaoUniversityQuanzhou3601China
關鍵詞:商務英語技能學生

ZHANG Peixin,DENG Xuemeiand ZHAO Junning1School of Mathematical Sciences,Huaqiao University,Quanzhou 3601,China.

1School of Mathematical Sciences,Xiamen University,Xiamen 361005,China.

Global Well-Posedness of Classical Solutions with LargeInitialDatatotheTwo-DimensionalIsentropic Compressible Navier-Stokes Equations

ZHANG Peixin1,2,?,DENG Xuemei2and ZHAO Junning21School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China.

1School of Mathematical Sciences,Xiamen University,Xiamen 361005,China.

Received 25 April 2013;Accepted 28 February 2014

.We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the two-dimensional isentropic compressible Navier-Stokes equations with smooth initial data under the assumption that the viscosity coefficient μis large enough.Here we do not require that the initial data is small.

Isentropic compressible Navier-Stokes equations;large viscosity coefficient;global classical solutions.

1 Introduction

In this paper,we consider the following compressible Navier-Stokes equations in R2

where ρ,u=(u1,u2)and P=Aργ(A>0,γ>1)are the fluid density,velocity and pressure, respectively.The constant viscosity coefficientsμand λ satisfy the physical restrictions:

Let?ρ be a fixed positive constant.We look for the solutions,(ρ(x,t),u(x,t)),to the Cauchy problem for(1.1)with the far field behavior:

and initial data,

There are huge literature on the large time existence and behavior of solutions to (1.1).The one-dimensional problem has been studied by many people,see[1–4]and the references therein.For the multi-dimensional case,the local existence and uniqueness of classical solutions are known in the absence of vacuum(see[5,6]),for strong solutions and the case that the initial density need not be positive and may vanish in an open sets see[7–10].The global classical solutions were first obtained by Matsumura-Nishida[11] for the initial data close to a non-vacuum equilibrium in the sense of some Sobolev space Hs.Later,Hoff[12,13]studied the problem for discontinuous initial data.The existence of weak solutions with arbitrary initial data was studied(the far field is vacuum,that is?ρ=0)by Lions[14](see also Feireisl[15]),where he obtains the global existence of weak solutions-defined as solutions with finite energy when the exponent γ is suitably large.The main restriction on initial data is that the initial energy is finite,so that the density vanishes at far fields,or even has compact support.Zhang and Fang established the existence of the global weak solutions in R2with the small initial energy of the initial data and the initial density bounded away from zero(see[16]).Recently,Huang-Li-Xin[17]establish the existence of the global classical solutions to the Cauchy problem for thecompressible Navier-Stokes equationsin 3-D withsmoothinitial data which are small energy.By theinspirationof[17],weestablishthe global existenceof classical solutionsto the Cauchy problem to the 3-D compressible Navier-Stokes equations with general initial data under the assumption that the viscosity coefficientμis large enough(see[18]).

Note that the Gagliardo-Nirenberg-Sobolev inequality in R2is different from the Gagliardo-Nirenberg-SobolevinequalityinR3,forexample,kukL6≤Ck?ukL2inR3which is a base of the proof in[18],but it is not correct in R2.So the result in[18]can not include the two-dimensional case.In this paper we generalized the result in[18]to the twodimensional case,to study the global existence of classical solutions to Cauchy problem (1.1)for general initial data.We obtain the well-posednessof global classical solutions for large initial data,under the assumption that the viscosity coefficientμis large enough. Here we do not require that the initial energy is small.In this paper some new difficulties are overcame.

Beforestatingthemainresults,weexplainthenotationsandconventionsusedthroughout this paper.We denote

For 1≤r≤∞,we denote the standard homogeneous and inhomogeneous Sobolev

spaces as follows:

The initial energy is defined as follows:

where G denotes the potential energy density given by

It is easy to see

Set N0=λ/μ.Then(1.2)implies N0≥-1 and

The main result in this paper can be stated as follows:

Theorem 1.1.Assume that(1.2)hold.For given positive numbers M1and M2(not necessarily small)and?ρ≥?ρ+1,suppose that the initial data(ρ0,u0)satisfy

and the compatibility condition

the Cauchy problem(1.1),(1.3)-(1.4)has a unique global classical solution(ρ,u)satisfying for any 0<τ<T<∞,

and

Moreover,the following large-time behavior holds

for all q∈(2,∞).

Remark 1.1.It is easy to show that the solution obtained in Theorem 1.1 is a classical solution for positive time.

Remark 1.2.In Theorem 1.1,for simplicity of the description,we assume onlyμis large enough,in fact we can give a quantity estimate for the viscosity coefficientsμfrom the proof of Theorem 1.1.

Remark 1.3.Similar to the Serrin type blow-up criterion for 3-D compressible Navier-Stokes equations(see[19]),there exists the same type blow-up criterion in R2,to prove the existence of the global solutions,we need only to prove that density ρ is uniformly bounded to all t≥0.

The rest of the paper is organized as follows:In Section 2,we state some elementary facts and inequalities which will be needed in later analysis.Section 3 is devoted to deriving the necessary a priori estimates on classical solutions which are needed to extend the local existence of solution to all the time.

2 Preliminaries

In this section,we will recall some known facts and elementary inequalities which will be used frequently later.

Lemma 2.1([20]).Assume that the initial data(ρ0,u0)with ρ0≥0 satisfy(1.7)-(1.8)and?ρ>0. Then there exist a small time T?>0 and a unique classical solution(ρ,u)to the Cauchy problem (1.1),(1.3)-(1.4)such that for any 0<τ<T?,

Next,the following well-known Gagliardo-Nirenberg inequality will be used later frequently.

Lemma 2.2.For p∈[2,+∞),q∈(1,∞),and r∈(2,∞),there exists some constant C>0,which may depend on p,q,r,such that for f∈H1and g∈Lq∩D1,r,we have

We now state some elementary estimates which follow from Gagliardo-Nirenberg inequalities and the standard Lp-estimate for the following elliptic system derived from the momentum equations in(1.1)

where

are the material derivative of f,the effective viscous flux and the vorticity respectively, here and after

Lemma 2.3.Let(ρ,u)be a smooth solution of(1.1)and(1.3).Then there exists a generic positive constant C such that for any p∈[2,+∞),

Proof.The standard Lp-estimate for the elliptic system(2.4)yields directly(2.6),which together with(2.2)and(2.5)gives(2.7)and(2.8).

Note that-△u=-?divu+?×w,which implies that

Thus the standard Lp-estimates shows that

By the H¨older inequality,(2.2),(2.6)-(2.8),one has

This finishes the proof of Lemma 2.3.

Next,the following Zlotnik inequality will be used to get the uniform(in time)upper bound of the density ρ.

Lemma 2.4([21]).Let the function y satisfy

with g∈C(R)and y,b∈W1,1(0,T).If g(∞)=-∞and

for all 0≤t1<t2≤T with someN0≥0 andN1≥0,then

3 A priori estimates

In this section,we will establish some necessary a priori bounds for smooth solutions to the Cauchy problem for(1.1),(1.3)-(1.4)to extend the local classical solution guaranteed by Lemma 2.1.Thus,Let T>0 be a fixed time and(ρ,u)be the smooth solution to(1.1),

(1.3)-(1.4),on R2×(0,T]in the class(2.1)with smooth initial data(ρ0,u0)satisfying(1.6)-(1.8).To estimate this solution,we define

語言知識與技能是學好商務英語的基礎,對于商務英語專業的學生來說,在專門針對商務英語專業的考試推出之前,必須重視并通過英語專業四級、八級考試。據統計,2012年全國獨立學院英語專業八級考試通過率不到三分之一,順利通過專業四級考試是大多數學生更為現實的目標。因此,獨立學院商務英語專業教學的重心應主要放在聽、說、讀、寫技能培養和詞匯、語法知識的講授上。

We have the following key a priori estimates on(ρ,u).

Proposition 3.1.For given numbers M1,M2>0(not necessarily small)and?ρ≥?ρ+1,assume that(ρ0,u0)satisfy(1.6)-(1.8).Then there exist positive constants K1,K2such that if(ρ,u)is a smooth solution of(1.1),(1.3)-(1.4)on R2×(0,T]satisfying

the following estimates hold

provided that(1.9)holds.

Proof.Proposition 3.1 is an easy consequence of the following Lemmas 3.2,3.3 and 3.5.

Inthe following,we will use the conventionthat C denotesa genericpositive constant dependingon A,γ,C0,?ρ,?ρ andtheconstantsinsomeSobolev’sinequalities,and wewrite C(α)to emphasize that C depends on α.

We start with the following standard energy estimate for(ρ,u)and preliminary L2bounds for?u and ρ˙u.

Lemma 3.1.Let(ρ,u)be a smooth solution of(1.1),(1.3)-(1.4)with 0≤ρ≤2?ρ.Then there is a constant C such that

Proof.Multiplying the first equation of(1.1)by G′(ρ)and the second by ujand integrating,applying the far field condition(1.3),one shows easily the energy inequality(3.3).

Multiplying(1.1)2by˙u then integrating the resulting equality over R2leads to

Using(1.1)1and integrating by parts give

Integrating by parts,we have

and similarly,

Collecting(3.7)-(3.9)into(3.6)leads to

where

Integrating(3.10)over(0,T),using(1.5)and(3.3),one has

i.e.,(3.4)holds.

Integrating by parts and using the equation(1.1)1,we have

After integrating by parts,we have

Similarly,

Substituting(3.14)-(3.16)into(3.13)shows that for δ>0 suitably small enough,

Integrating(3.17)over(0,T)gives

where we have used the compatibility condition(we can defineThus one finishes the proof of this Lemma.

Next,the following lemma will give more accurate estimates with respect to A1(T) and A2(T).

Lemma 3.2.There exist positive constants K1,K2depending on A,γ,C0,?ρ,?ρ,M1and M2such that,if(ρ,u)is a smooth solution of(1.1),(1.3)-(1.4)satisfying(3.1),then

providedμ≥C1(N0+2),whereC1is a constant depending only on A,γ,C0,?ρ,?ρ.

Proof.Using H¨older’s inequality and Young’s inequality,it follows from(3.3)and(3.4) that

Due to(2.9),

It follows from(2.7)that

and duo to(2.8),

To estimate the second term on the right side of(3.21),one deduces from(1.1)that P(ρ)-P()satisfies

Multiplying(3.24)by 3(P(ρ)-P())2and integrating the resulting equality over R2,one gets after using divu=(2μ+λ)-1[F+P(ρ)-P()]that

Integrating(3.25)over(0,T),one may arrive at

Therefore,collecting(3.21)-(3.23)and(3.26)shows that

Combining(3.20)and(3.27)leads to

Clearly if choose K1such that

and

then the first inequality of(3.19)holds.

On the other hand,combining(3.5)and(3.27)gives

Clearly if choose K2such that

and

then the second inequality of(3.19)holds.

Combining(3.29)and(3.31),one has.

Lemma 3.3.Let t∈[0,T]and p∈[2,+∞),we have

Proof.Since

applying(2.2),(1.8)and(3.3),we get

Hence form(2.2)we obtain the inequality of(3.32).

We now proceed to derive uniform(in time)bounds for ρ.

Lemma 3.4.There exists a positive constantCdepending on C0,A,γ,,such that,if

and(ρ,u)is a smooth solution of(1.1),(1.3)-(1.4)as in Lemma 3.2,then

Proof.To prove this lemma,we rewrite the equation of the mass conservation(1.1)1as

where

For all 0≤t1≤t2≤T,one deduces from Lemma 2.2,(3.3),(3.19)and(2.10)that

where(3.28),(3.30),(3.33)and the following estimate is used,choosingCin(3.33)is suitably large.According to(2.6),(2.2)and(3.32),such that

Therefore,one can chooseN1andN0in(2.11)as:

Note that

which completes the proof of this Lemma.

Proof of Theorem 1.1.Proposition 3.1 implies that the density ρ and A1,A2are uniformly boundedindependentof t.Hence according to the blow-up criterion for 2D compressible Navier-Stokes equations,which can be obtained easily by the method of[19],the Cauchy problem(1.1),(1.3)-(1.4)has a global classical solution.The large-time behavior of(ρ,u) in(1.10)can be proved in the same way as that in[17].?

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (Grant No.11001090),the Fundamental Research Funds for the Central Universities (Grant No.11QZR16).

[1]Hoff D.,Global existence for 1D,compressible,isentropic Navier-Stokes equations with large initial data.Trans.Amer.Math.Soc.,303(1)(1987)169-181.

[2]Kazhikov A.V.,Shelukhin V.V.,Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas.Prikl.Mat.Meh., 41(1977)282-291.

[3]SerreD.,Solutions faibles globales des′equations de Navier-Stokespour un fluide compressible.C.R.Acad.Sci.Paris S′er.I Math.,303(1986)639-642.

[4]Serre D.,Sur 1’′equation monodimensionnelle d’un fluide visqueux,compressible et conducteur de chaleur.C.R.Acad.Sci.Paris S′er.I Math.,303(1986)703-706.

[5]Nash J.,Le probl`eme de Cauchy pour les′equations diff′erentielles d’un fluide g′en′eral.Bull. Soc.Math.France,90(1962)487-497.

[6]SerrinJ.,On theuniqueness ofcompressiblefluid motion.Arch,Rational.Mech.Anal.,3(1959) 271-288.

[7]Cho Y.,Choe H.J.,Kim H.,Unique solvability of the initial boundary value problems for compressible viscous fluid.J.Math.Pures Appl.,83(2004)243-275.

[8]Cho Y.,Kim H.,On classical solutions of the compressible Navier-Stokes equations with nonnegative intial densities.Manuscript Math.,120(2006)91-129.

[9]Choe H.J.,Kim H.,Strong solutions of the Navier-Stokes equations for isentropic compressible fluids.J.Differ.Eqs.,190(2003)504-523.

[10]Salvi R.,Straskraba I.,Global existence for viscous compressible fluids and their behavior as t→∞.J.Fac.Sci.Univ.Tokyo Sect.IA.Math.,40(1993)17-51.

[11]Matsumura A.,Nishida T.,The initial value problem for the equations of motion of viscous and heat-conductive gases.J.Math.Kyoto Univ.,20(1)(1980)67-104.

[12]HoffD.,Global solutions of the Navier-Stokesequations for multidimendional compressible flow with disconstinuous initial data.J.Differ.Eqs.,120(1)(1995)215-254.

[13]Hoff D.,Strong convergence to global solutions for multidimensional flows of compressible,viscous fluids with polytropic equations fo state and discontinuous initial data.Arch. Rational Mech.Anal.,132(1995)1-14.

[14]Lions P.L.,Mathematical Topics Influid Mechanics.Vol.2.Compressible Models.New York: Oxford University Press,1998.

[15]Feiresl E.,Novotny A.,Petzeltov′a H.,On the existence of globally defined weak solutions to the Navier-Stokes equations.J.Math.Fluid Mech.,3(4)(2001)358-392.

[16]Zhang T.,Fang D.Y.,Compressible flows with a density-dependent viscosity coefficient. SIAM J.Math.Anal.,41(6)(2010)2453-2488.

[17]Huang X.D.,Li J.,Xin Z.P.,Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic Navier-Stokes.Comm.Pure Appl. Math.,65(4)(2012)549-585.

[18]Deng X.M.,Zhang P.X.,Zhao J.N.,Global well-posedness of classical solutions with large initial data and vacuum to the Three-dimensional isentropic compressible Navier-Stokes equations.Sci.China Math.,55(2012)2457-2468.

[19]SunY.Z.,Zhang Z.F.,Ablow-up criterionofstrong solutions to the2DcompressibleNavier-Stokes equations.Sci.China Math.,54(2011)105-116.

[20]Luo Z.,Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum.Comm.Math.Sci.,10(2012)527-554.

[21]Zlotnik A.A.,Uniform estimates and stabilization of symmetric solutions of system of quaslinear equations.Diff.Equations,36(2000)701-716.

10.4208/jpde.v27.n2.5 June 2014

?Corresponding author.Email addresses:zhpx@hqu.edu.cn(P.Zhang),dxuemei@gmail.com(X.Deng), jnzhao@xmu.edu.cn(J.Zhao)

AMS Subject Classifications:76N10,35M10

Chinese Library Classifications:O175.28,O357

猜你喜歡
商務英語技能學生
高級技能
“任務型”商務英語教學法及應用
時代人物(2019年29期)2019-11-25 01:35:20
基于SPOC的商務英語混合式教學改革研究
趕不走的學生
秣馬厲兵強技能
中國公路(2017年19期)2018-01-23 03:06:33
拼技能,享豐收
學生寫話
學生寫的話
基于圖式理論的商務英語寫作
畫唇技能輕松
Coco薇(2015年11期)2015-11-09 13:03:51
主站蜘蛛池模板: 国产精品一线天| 国模极品一区二区三区| 久久精品丝袜| 国产成人综合亚洲网址| 日韩亚洲高清一区二区| 亚洲精品亚洲人成在线| 国产麻豆福利av在线播放| 欧美成人免费午夜全| 亚洲综合久久一本伊一区| 日韩高清在线观看不卡一区二区| 日韩精品久久无码中文字幕色欲| 亚洲中文无码av永久伊人| 国产精品蜜臀| 亚洲国产精品人久久电影| 国产一级精品毛片基地| 国产亚洲精品精品精品| 国产精品私拍在线爆乳| 国产无遮挡裸体免费视频| 欧美日韩在线国产| 亚洲视频在线网| 精品自窥自偷在线看| 欧美激情网址| 99在线小视频| 无码中文字幕精品推荐| 永久免费av网站可以直接看的| 欧美一级大片在线观看| 国产特级毛片aaaaaa| 日本免费a视频| 看国产一级毛片| 国产精品成人一区二区| 91精品aⅴ无码中文字字幕蜜桃 | 成人av专区精品无码国产| www亚洲天堂| 欧美a在线视频| 亚洲成a人片在线观看88| 噜噜噜综合亚洲| 思思热精品在线8| 亚洲综合九九| 欧美a在线视频| 99热国产这里只有精品9九| 日韩AV手机在线观看蜜芽| 久久熟女AV| 亚洲熟女偷拍| 高潮毛片免费观看| 97亚洲色综久久精品| 有专无码视频| 国产91精品调教在线播放| 日韩无码黄色| 国产综合网站| 美女国产在线| 亚洲欧洲日韩综合| 中文字幕人成乱码熟女免费| 亚洲日韩精品伊甸| 国产精品不卡永久免费| 丰满的少妇人妻无码区| 日韩在线视频网| 日韩精品一区二区三区免费| 亚洲精品第一在线观看视频| a天堂视频| 在线免费亚洲无码视频| 久久精品人人做人人| 日韩亚洲综合在线| 97在线公开视频| 亚洲中文字幕日产无码2021| 国产91在线|日本| 无码高潮喷水专区久久| 亚亚洲乱码一二三四区| 亚洲久悠悠色悠在线播放| 黄色污网站在线观看| 国产成人精品优优av| 99热精品久久| 免费看a毛片| 亚洲一区毛片| 欧美精品xx| 8090午夜无码专区| 久久午夜影院| 五月天福利视频| 久久久久久午夜精品| 日本久久免费| 国产h视频在线观看视频| 亚洲高清在线播放| 香蕉久久国产精品免|