999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Existence and Nonexistence of Weak Positive Solution for a Class of p-Laplacian Systems

2014-05-03 12:48:24AKROUTKamelandGUEFAIFIARafik

AKROUT Kameland GUEFAIFIA Rafik

LAMIS Laboratory,Tebessa University,Tebessa,Algeria.

LANOS Laboratory,Badji Mokhtar University,Annaba,Algeria.

Existence and Nonexistence of Weak Positive Solution for a Class of p-Laplacian Systems

AKROUT Kamel?and GUEFAIFIA Rafik

LAMIS Laboratory,Tebessa University,Tebessa,Algeria.

LANOS Laboratory,Badji Mokhtar University,Annaba,Algeria.

Received 22 October 2013;Accepted 24 March 2014

.In this work,we are interested to obtain some result of existence and nonexistence of positive weak solution for the following p-Laplacian system

AMS Subject Classifications:35J25,35J60

Chinese Library Classifications:O175.8,O175.25,O175.29

Positive solutions;sub-supersolutions;elliptic systems.

1 Introduction

In this paper,we are concerned with the existence and nonexistence of positive weak solution to the quasilinear elliptic system

where are a positive parameter,and ? is a bounded domain in RNwith smooth boundary??.We prove the existence of a positive weak solution for λi>,1≤i≤m when

Problems involving the p-Laplacian arise from many branches of pure mathematics as in thetheoryofquasiregularandquasiconformalmappingas wellasfromvarious problems in mathematical physics notably the flow of non-Newtonian fluids.

Hai,Shivaji[1]studied the existence of positive solution for the p-Laplacian system

where f(s),g(s)are the increasing functions in[0,∞)and satisfy

the authors showed that the problem(1.2)has at least one positive solution provided that λ>0 is large enough.

In[2],the author studied the existence and nonexistence of positive weak solution to the following quasilinear elliptic system

The first eigenfunction is used to construct the subsolution of problem(1.3),the main results are as follows:

(i)If α,β≥0,γ,δ>0,θ=(p-1-α)(q-1-β)-γδ>0,then problem(1.3)has a positive weak solution for each λ>0;

(ii)If θ=0 and pγ=q(p-1-α),then there exists λ0>0 such that for 0<λ<λ0,then problem(1.3)has no nontrivial nonnegative weak solution.

2 Definitions and notations

Definition 2.1.We called positive weak solution u=(u1,…,um)∈X of(1.1)such that satisfies

for all φ=(φ1,…,φm)∈X with φi≥0,1≤i≤m.

Definition 2.2.We called positive weak subsolution ψ=(ψ1,…,ψm)∈X and supersolution z=(z1,…,zm)∈X of(1.1)such that ψi≤zi,?i,1≤i≤m,satisfies Z

and

for all φ=(φ1,…,φm)∈X with φi≥0,1≤i≤m.

the following assumptions;

and

An example:

Let λpibe the first eigenvalue of-Δpiwith Dirichlet boundary conditions and ?ithe corresponding positive eigenfunction withk?ik∞=1,and Mi,σi,δ>0,1≤i≤m such that

The assumption(H1)assume that

3 Main results

Proof.We shall verify that ψi,1≤i≤m,where

then

Hence

i.e.,ψ=(ψ1,…,ψm)∈X is a subsolution of(1.1).

Next,let ωibe the solution of

Let

By(H1)and(H2),we can choose C large enough so that

whereμi=kωik∞.Then

which imply that

Then we have

i.e.,z=(z1,…,zm)∈X is a supersolution of(1.1)with zi≥ψi,1≤i≤m for C large.Thus, there exists a solution u=(u1,…,um)∈X of(1.1)with ψi≤ui≤zi,1≤i≤m.

Proof.Multiplying Eq.(1.1)by uiand integrating over ?,we obtain

in an other hand

Then,we have

Corollary 3.1.Consider the following system in X

1)The system(3.1)has a positive weak solution if

2)The system(3.1)has not positive weak solution ifˉλi<λpi

where

Proof.1)Using Theorem 3.1,the assumption(3.2)imply the desired result. 2)(3.3)and the following generalized Young inequality

imply that

Multiplying the equation(i)in(3.1)by uiand integrating over ?,we obtain by using (3.5)

then

which is a contradiction ifˉλi<λpi.

Corollary 3.2.The following problem has a positive solution if λ large

where ? is a bounded domain in RNwith smooth boundary??,λ is a positive parameter and γ is a function of class L∞(?)and H is of class C1(Rm)verify

The problem(3.6)can be written under the following system form

In this case,we have

Then the assumptions of theorem(3.1)holds.

[1]Hai D.D.,Shivaji R.,An existence result on positive solutions for a class of p-Laplacian systems.Nonl.Anal.,56(2004),1007-1010.

[2]Chen C.,On positive weak solutions for a class of quasilinear elliptic systems.Nonl.Anal., 62(2005),751-756.

[3]Ala S.,Afrouzi G.A,Zhang Q.and Niknam A.,Existence of positive solutions for variable exponent elliptic systems.Boundary Value Problems,2012,2012:37.

[4]Afrouzi G.A.,Vahidi J.,On critical exponent for the existence and stability properties of positive weak solutions for some nonlinear elliptic systems involving the(p,q)-Laplacian and indefinite weight function.Proc.Indian Acad.Sci.(Math.Sci.),121(1)2011,83-91.

[5]Afrouzi G.A.,Valinejad Z.,Nonexistence of result for some p-Laplacian Systems.J.Math. Compu.Scie.,3(2)(2011),112-116.

[6]Ali J.,Shivaji R.,Existence results for classes of Laplacian systems with sign-changing weight.Appl.Math.Lett.,20(2007),558-562.

[7]Ali J.,Shivaji R.,Positive solutions for a class of p-Laplacian systems with multiple parameters.J.Math.Anal.Appl.,335(2007),1013-1019.

[8]Chen C.,On positive weak solutions for a class of quasilinear elliptic systems.Nonl.Anal., 62(2005),751-756.

[9]Dalmasso R.,Existence and uniqueness of positive solutions of semilinear elliptic systems. Nonl.Anal.,39(2000),559-568.

10.4208/jpde.v27.n2.6 June 2014

?Corresponding author.Email addresses:akroutkamel@gmail.com(K.Akrout),nabilrad12@yahoo.fr(R. Guefaifia)

主站蜘蛛池模板: 国产福利一区视频| 狠狠干欧美| 国产又粗又猛又爽| 国产日韩欧美在线播放| 四虎永久在线视频| 制服丝袜一区二区三区在线| 激情综合网激情综合| 99re在线观看视频| 国产精品免费p区| 久久精品国产91久久综合麻豆自制| 日韩在线成年视频人网站观看| 国产精品制服| 伊人久久婷婷五月综合97色| 91综合色区亚洲熟妇p| 国产高清免费午夜在线视频| 国产手机在线小视频免费观看| 国产区免费精品视频| 99视频精品全国免费品| 亚洲国产中文综合专区在| 亚洲娇小与黑人巨大交| 久久综合伊人 六十路| 国产欧美又粗又猛又爽老| 亚洲最大综合网| 国产精品亚洲片在线va| 久久99国产视频| 2024av在线无码中文最新| 精品久久高清| 一级毛片免费高清视频| 亚洲AV无码不卡无码| 国产浮力第一页永久地址| 国产高清又黄又嫩的免费视频网站| 国产日韩久久久久无码精品| 中文字幕在线一区二区在线| 日本三级黄在线观看| 久久久精品无码一区二区三区| 香蕉99国内自产自拍视频| 性做久久久久久久免费看| 日本高清免费一本在线观看| 欧美精品啪啪一区二区三区| 91麻豆国产在线| 福利小视频在线播放| 国产美女免费网站| 狂欢视频在线观看不卡| 一本大道东京热无码av| 免费人欧美成又黄又爽的视频| 一个色综合久久| 538精品在线观看| 久久天天躁狠狠躁夜夜2020一| 人妻中文字幕无码久久一区| 国产欧美日韩视频怡春院| 在线播放国产99re| 91久久国产综合精品女同我| 中文字幕无码制服中字| …亚洲 欧洲 另类 春色| 亚洲无码91视频| 国产成人盗摄精品| 国产精品国产主播在线观看| 中文字幕啪啪| 国产视频 第一页| 欧美另类一区| 国产视频一区二区在线观看| 国产拍揄自揄精品视频网站| 亚洲人妖在线| 亚洲男人的天堂久久香蕉网| 国内精品自在自线视频香蕉| 国产精品亚洲天堂| 91精品伊人久久大香线蕉| 亚洲综合第一区| 国产午夜看片| 国产成人91精品免费网址在线| 亚洲国产系列| 亚洲Av综合日韩精品久久久| 在线观看国产精品第一区免费| 亚洲国产精品日韩专区AV| 精品成人免费自拍视频| 最新国产网站| 精品日韩亚洲欧美高清a| 欧美狠狠干| 在线观看亚洲人成网站| 伊人久久大香线蕉影院| 国产永久在线观看| 久青草国产高清在线视频|