摘 要: 數與形是數學教學研究對象的兩個側面,把數量關系和空間形式結合起來去分析問題、解決問題,就是數形結合思想。“數形結合”可以借助簡單的圖形、符號和文字所作的示意圖,促進學生形象思維和抽象思維的協調發展,溝通數學知識之間的聯系,從復雜的數量關系中凸顯最本質的特征。
關鍵詞: 小學數學;數學方法;運用
一、集合的思想方法
把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對象,如數學上的點、數、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學數學中就有所體現。在小學數學中,集合概念是通過畫集合圖的辦法來滲透的。如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。利用圖形間的關系則可向學生滲透集合之間的關系,如長方形集合包含正方形集合,平行四邊形集合包含長方形集合,四邊形集合又包含平行四邊行集合等。
二、對應的思想方法
對應是人的思維對兩個集合間問題聯系的把握,是現代數學的一個最基本的概念。小學數學教學中主要利用虛線、實線、箭頭、計數器等圖形將元素與元素、實物與實物、數與算式、量與量聯系起來,滲透對應思想。
如人教版一年級上冊教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對應后,進行多少的比較學習,向學生滲透了事物間的對應關系,為學生解決問題提供了思想方法。
三、函數的思想方法
恩格斯說:“數學中的轉折點是笛卡兒的變數。有了變數,運動進入了數學,有了變數,辯證法進入了數學,有了變數,微分和積分也就立刻成為必要的了。”我們知道,運動、變化是客觀事物的本質屬性。函數思想的可貴之處正在于它是運動、變化的觀點去反映客觀事物數量間的相互聯系和內在規律的。學生對函數概念的理解有一個過程。在小學數學教學中,教師在處理一些問題時就要做到心中有函數思想,注意滲透函數思想。函數思想在人教版一年級上冊教材中就有滲透。如讓學生觀察《20以內進位加法表》,發現加數的變化引起的和的變化的規律等,都較好的滲透了函數的思想,其目的都在于幫助學生形成初步的函數概念。
四、極限的思想方法
極限的思想方法是人們從有限中認識無限,從近似中認識精確,從量變中認識質變的一種數學思想方法,它是事物轉化的重要環節,了解它有重要意義。現行小學教材中有許多處注意了極限思想的滲透。在“自然數”、“奇數”、“偶數”這些概念教學時,教師可讓學生體會自然數是數不完的,奇數、偶數的個數有無限多個,讓學生初步體會“無限”思想;在循環小數這一部分內容中,1÷3=0.333…是一循環小數,它的小數點后面的數字是寫不完的,是無限的;在直線、射線、平行線的教學時,可讓學生體會線的兩端是可以無限延長的。
五、化歸的思想方法
化歸是解決數學問題常用的思想方法。化歸,是指將有待解決或未解決的問題,通過轉化過程,歸結為一類已經解決或較易解決的問題中去,以求得解決。客觀事物是不斷發展變化的,事物之間的相互聯系和轉化,是現實世界的普遍規律。數學中充滿了矛盾,如已知和未知、復雜和簡單、熟悉和陌生、困難和容易等,實現這些矛盾的轉化,化未知為已知,化復雜為簡單,化陌生為熟悉,化困難為容易,都是化歸的思想實質。任何數學問題的解決過程,都是一個未知向已知轉化的過程,是一個等價轉化的過程。化歸是基本而典型的數學思想。我們實施教學時,也是經常用到它,如化生為熟、化難為易、化繁為簡、化曲為直等。
六、符號化的思想方法
數學發展到今天,已成為一個符號化的世界。符號就是數學存在的具體化身。英國著名數學家羅素說過:“什么是數學?數學就是符號加邏輯。”數學離不開符號,數學處處要用到符號。懷特海曾說:“只要細細分析,即可發現符號化給數學理論的表述和論證帶來的極大方便,甚至是必不可少的。”數學符號除了用來表述外,它也有助于思維的發展。如果說數學是思維的體操,那么,數學符號的組合譜成了“體操進行曲”。現行小學數學教材十分注意符號化思想的滲透。
七、生活素材的思想方法
生活中充滿著數學,作為數學教師,我們更要善于從學生的生活中抽象出數學問題,使學生感到數學就在自己的身邊,認清數學思想的實用性,從而靈活運用數學思想。
例如:在教學 “三角形的認識”一課時,教師可以從學生生活中熟悉的紅領巾、自行車車架、橋架等引出三角形,再讓學生通過推、拉等實踐活動認識三角形的穩定性,并運用它來解決一些實際生活問題,如修補搖晃的椅子。學生會馬上想到應用剛學過的“三角形穩定性”,給椅子加上木檔子形成三角形,從而使椅子穩當起來。這樣使學生學得容易且印象深刻,達到事半功倍的效果。這樣數學思想在生活實際中就得到很好的應用,學生就逐漸有了數學思想的意識。
在實際生活中,數、形隨處可見,無處不有。教師可以根據教學的實際,讓學生把所學知識和周圍的生活環境相聯系,幫助他們在形成知識,技能的同時,逐漸培養學生數學思想,懂得運用數學思想解決生活中的數學問題。
總之,從教學效果看,在教學中滲透和運用這些教學思想方法,能增加學習的趣味性,激發學生的學習興趣和學習的主動性;能啟迪思維,發展學生的數學智能;有利于學生形成牢固、完善的認識結構。總之,在教學中,教師要既重視數學知識、技能的教學,又注重數學思想、方法的滲透和運用,這樣無疑有助于學生數學素養的全面提升,無疑有助于學生的終身學習和發展。
參考文獻
[1] 徐學福.論探究學習的失范與規范[J].教育學報,2010(02)
[2] 王重玖.讓數學課堂充滿生命的活力[J].教育科研論壇,2009(03)