999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Poincaré Series of Relative Invariants of Finite Pseudo-reflection Groups in Finite Fields

2014-03-19 09:34:18QINXiaoerYANLi

QIN Xiaoer, YAN Li

(College of Mathematics and Computer Science, Yangtze Normal College, Chongqing 408100)

1 Introduction

Invariants theory is an important branch of algebra. In 1890, using the Hilbert basis theorem, Hilbert[1]proved the invariants ofGLn(C) is finitely generated. In 1955, for every finite reflection group, Chevalley[2]got that each invariant of finite reflection groups can be represented by the polynomial of elementary invariants, and this result was extended to finite pseudo-reflection groups. Poincaré series is an algebraic invariant. In 1897, Molien[3]gave a formula to compute the Poincaré series of the general linear groups. The invariants and relative invariants have relations with Poincaré series, such as the coefficients of Poincaré series are the dimensions of the invariants corresponding degrees. The relative invariants of finite pseudo-reflection groups are similar to the invariants of finite pseudo-reflection groups, and the relative invariants of finite pseudo-reflection groups have some relation with the 1-dimension representation of the groups. Wan[4]introduced the invariants and relative invariants theory of finite reflection groups. Smith[5]gave the relation between invariants and relative invariants of finite pseudo-reflection groups. Nan and Qin[6]did some researches on relative invariants of finite pseudo-reflection groups in the general fields, and computed the Poincaré series of relative invariants of finite pseudo-reflection groups. Recently, invariants of groups have been an interesting subject of study. Nan and his students[7-11]did many researches on this topic, and more and more scholars begin to study invariants, we refer the readers to [12-15].

LetFqbe a finite field withq=pm,m≥1, andVbe then-dimensional vector space overFq. The pseudo-reflection and the reflecting hyperplane are defined as follows

σ∈GL(V),H={ξ∈V|σξ=ξ}.

If dimH=n-1, thenσis called a pseudo-reflection, and subspaceHis called the reflecting hyperplane ofσ. A vectorv≠0 in Im(σ-1) is called a reflecting vector ofσ.

For convenience, we always supposeGis a finite pseudo-reflection group that is generated by the fundamental pseudo-reflectionss1,s2,…,sn,Fqdenotes a fixed finite field with characteristicp, unless the contrary is explicitly stated.σhas finite order,pdoes not divide the order ofσ(which we shall call the nonmodular case), thusσmust be diagonalizable.

2 The 1-dimensional representation of finite pseudo-reflection groups in finite field

We can now give the first main result of this paper.

Theorem2.1LetPbe aχ-relative invariant of the groupG, i.e. for eachσ∈G,σ·P=χ(σ)P,P≠0,Fqbe a finite field andGbe a finite pseudo-reflection group. Forσ∈G, let |σ|=r. Ifr|q-1, thenχ(σ)=1 orχ(σ)=(detσ)α, where 1≤α≤r-1.

ProofLetUbe a reflecting hyperplane of a pseudo-reflectionσ, letGU=〈σ〉,|σ|=r. Take a basisε1,ε2,…,εn, such that

σi(εj) =εj, 1≤j≤n-1,

σ·P=χ(σ)P,

Suppose that

then

which is equivalent to

Sincer|q-1, comparing coefficients of thexn, we get that

χ(σ)=1 orP0=0;

χ(σ)ξσ=1 orP1=0;

……

0≤m1,m2≤r-1,

0≤α≤r-1.

This completes the proof of Theorem 2.1.

In what follows we shall characterize the relation between theχ-relative invariants and invariants ofG. LetH(G)={Hs|s∈G} denote the set of reflecting hyperplanes of all pseudo-reflections inG,

Hs={λ∈V|ls(x1,x2,…,xn)(λ)=0}

is defined byls(x1,x2,…,xn)=0, wherels(x1,x2,…,xn)=0 is a homogeneous linear polynomial. IfU∈H(G) is a reflecting hyperplane ofG, denotesGUthe pointwise stabilizer ofUinG. This is the group generated by all the pseudo-reflections inGwithUa reflecting hyperplane together with 1. For everyU∈H(G), chooseaU∈Nminimal such that

χ(sU)=det(sU)aU

and introduce the form

In the following, we shall show that

divides everyχ-relative invariant ofG. We need the following lemmas.

If none ofl1,l2,…,lkis nonzero multiples ofls, thenα1α2…αk=1 andL=α1α2…αkis a invariant ofs.

Writing

Thus

i.e.

is aχ-relative invariant.

By Lemma 2.5, we can make the conclusion that the difference between relative invariants and invariants is only one divisor

3 The Poincaré series of relative invariants of finite pseudo-reflection groups in finite fields

Fq[V*] is a gradedFq-algebra, the Poincaré series ofFq[V*] is defined as follows

whereFq[V*]dis aFq-subspace consisting of all homogeneous polynomial functions of degreedinFq[V*]. For the finite subgroup of the general linear group, its Poincaré series of invariants can be characterized by Molien’s Theorem. In what follows, we give the second main result of this paper.

Theorem3.1LetVbe a finite dimensionFqvector space. LetG∈GL(V) be a finite nonmodular subgroup. Ifpdoes not divide |G|, then

we defineσ·fas

then

Supposeλ1(σ-1),λ2(σ-1),…,λn(σ-1) are the eigenvalue of the linear tranformationσ-1, then

Sinceλi(σ-1)=λi(σ)-1,i=1,2,…,n,

Thus

[1] Hilbert D. Uber die theorie der algebarischen[J]. Math Ann,1890,36:473-534.

[2] Chevallay C. Invariants of finite groups generated by reflections[J]. Am J Math,1955,77:778-782.

[3] Molien T. Uber Die Invarianten Der Lenear Substitutions Gruppen[M]. Berliner:Sitzungsberichte,1898:1152-1156.

[4] Wan Z X. Invariants Theory of Finite Reflection Groups[M]. Shanghai:Shanghai Jiao Tong University Press,1997.

[5] Smith L. Free modules of relative invariants and some rings of invariants that are Cohen-Macaulay[J]. Proc Am Math Soc,2006,8:2205-2212.

[6] Nan J Z, Qin X E. The Poincaré series of relative invariants of finite pseudo-reflection groups[J]. J Math Research and Exposition,2010,30:338-344.

[7] Nan J Z, Chen Y. The invariants of the groups of lower triangular matrices over finite fields[J]. Acta Math Scientia,2011,A31:678-681.

[8] Nan J Z, Chen Y. Ring of invariants of general linear group over local ring[J]. Front Math China,2011,6:887-899.

[9] Nan J Z, Zhao H F. Modular vector invariants of cyclic groups[J]. Math Research and Exposition,2011,6:997-1002.

[10] Nan J Z, Zhao J. Rational invariants of the generalized classical groups[J]. Commun Math Research,2011,2:127-138.

[11] Nan J Z, Qin Y F. On invariants of some maximal subgroups of finite classical groups[J]. Algebra Colloquium,2012,19:149-158.

[12] Sezer M. Explicit separating invariants for cyclicP-groups[J]. J Combinatorial Theory,2011,A118:681-689.

[13] Chuai J. Invariants of modular groups[J]. J Algebra,2007,318:710-722.

[14] Dufresne E. Separating invariants and finite reflection groups[J]. Adv Math,2009,221:1979-1989.

[15] Derksen D, Kemper G. Computing invariants of algebraic groups in arbitrary characteristic[J]. Adv Math,2008,217:2089-2129.

主站蜘蛛池模板: 久久精品66| 99视频在线免费| 99re这里只有国产中文精品国产精品| 国产日韩欧美中文| 中国毛片网| 久久青草热| 波多野结衣一区二区三区四区| 日韩123欧美字幕| 极品国产一区二区三区| 国产人成在线观看| 国产欧美性爱网| 亚洲最新网址| 中文字幕第1页在线播| 最新国产在线| 亚洲V日韩V无码一区二区| 久久不卡精品| 2020久久国产综合精品swag| 又粗又大又爽又紧免费视频| 五月婷婷丁香综合| www.狠狠| 欧美日韩国产精品va| 精品在线免费播放| 永久免费AⅤ无码网站在线观看| 狠狠色综合网| 国产电话自拍伊人| 亚洲无码视频图片| 99re这里只有国产中文精品国产精品| 国产精品v欧美| a毛片免费在线观看| 欧美一级黄色影院| 福利国产在线| 曰AV在线无码| 亚洲美女视频一区| 国产爽爽视频| 久久国产精品夜色| 亚洲美女一级毛片| 992Tv视频国产精品| 国内精品伊人久久久久7777人| 国产午夜无码专区喷水| 中文字幕在线播放不卡| 久久久久久久久亚洲精品| 久久99这里精品8国产| 国模极品一区二区三区| 无码国内精品人妻少妇蜜桃视频 | 好紧太爽了视频免费无码| 97国产精品视频自在拍| 欧美午夜在线观看| 日韩精品一区二区三区大桥未久 | 欧美日韩北条麻妃一区二区| 亚洲成年人网| 国产成+人+综合+亚洲欧美| 欧美一级高清片欧美国产欧美| 国产毛片基地| 免费在线看黄网址| 日韩AV无码一区| 亚洲有无码中文网| 成人免费一级片| 最新日韩AV网址在线观看| 亚洲三级a| 91精品在线视频观看| 国产爽妇精品| 毛片免费网址| 日本a级免费| 国产乱人视频免费观看| 69av在线| 深爱婷婷激情网| 香蕉eeww99国产在线观看| 91 九色视频丝袜| 九九热精品在线视频| 欧美自慰一级看片免费| 亚国产欧美在线人成| 在线观看精品国产入口| 久久婷婷六月| 一区二区日韩国产精久久| 欧美国产在线精品17p| 亚洲欧美成aⅴ人在线观看| 精品夜恋影院亚洲欧洲| 亚洲三级影院| 在线免费无码视频| 国产一区二区丝袜高跟鞋| 无码精油按摩潮喷在线播放| 天天摸天天操免费播放小视频|