999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有同宿軌的系統(tǒng)在擾動下的分岔及混沌行為

2014-03-19 09:35:42朱長榮
關(guān)鍵詞:系統(tǒng)

朱長榮

(重慶大學 數(shù)學與統(tǒng)計學院, 重慶 401331)

由方程導(dǎo)出的動力系統(tǒng),一直以來都是動力系統(tǒng)研究的重要內(nèi)容.考慮下面的方程

(1)

其中,f∈Cr,r≥1.在滿足初值x(0)=x0時,方程(1)的解是存在唯一的.如果存在x=x0,使得f(x0)=0,則稱x0為方程(1)的平衡點,有時也稱之為平衡解.如果方程(1)有平衡點x0,作適當平移以后,可以將x0移到原點,而系統(tǒng)的動力性態(tài)不改變.因此,以下總假設(shè)x0=0為系統(tǒng)的平衡點.記方程的解為x(t)=φt(x0).令U?RN為原點的適當開領(lǐng)域,下面定義原點的局部穩(wěn)定流形和不穩(wěn)定流形:

當t→∞,

且φt(x)∈U對所有t≥0},

且φt(x)∈U對所有t≤0}.

(2)

其中Df(0)是函數(shù)f在0點處的雅可比矩陣.如果Df(0)的所有特征值的實部不為零,則稱0為雙曲平衡點.由常微分方程的基本理論可知:方程(2)在雙曲平衡點附近,會有維數(shù)分別為ns、nu的穩(wěn)定和不穩(wěn)定的不變子空間.方程(2)在雙曲平衡點附近的穩(wěn)定和不穩(wěn)定的不變子空間與方程(1)在原點附近的局部穩(wěn)定流形和不穩(wěn)定流形之間,由下面的穩(wěn)定流形定理說明了它們的關(guān)系[1-2].

正在研究的系統(tǒng)(1),是實際問題經(jīng)過高度抽象和舍棄許多細枝末節(jié)而得到的抽象系統(tǒng).當補充上這些被舍棄的小節(jié)后,實際問題應(yīng)該是下面的系統(tǒng):

(3)

1 同宿軌的存在性

對這個問題的研究,一直以來有2個主要的方法:幾何的方法和分析的方法.這2個方法現(xiàn)在任然是研究同宿軌的保持性和破裂的重要方法.令x∈R2,g關(guān)于t是周期的,g(0,t,)=0(這個條件不是本質(zhì)的,因為只要做個平移,總可以辦到).1963年,V. K. Melnikov[5]從幾何的觀點入手,應(yīng)用Poincaré映射的方法,來研究系統(tǒng)(3)在很小的參數(shù)時的同宿軌的存在性.因為0對方程(1)是雙曲的,它有一維的穩(wěn)定流形和不穩(wěn)定流形.則對于方程(3),它的平衡點附近也有在γ附近的一維的穩(wěn)定流形和不穩(wěn)定流形.在γ(0)處取一小段橫截痕Σt0,則(3)的穩(wěn)定流形和不穩(wěn)定流形與Σt0分別相交于和定義距離

d

很顯然d0(t0)=0,并且如果存在t0,使得d(t0)=0,則擾動方程在γ附近就存在同宿軌γ.定義Melnikov函數(shù)

其中∧是外積.如果將d(t0)沿著展開,M(t0)與展開式的一次項緊密相關(guān).可以證明,如果存在t0,使得M(t0)=0,DM(t0)≠0,則方程(3)在γ附近就存在同宿軌γ.這個方法就是著名的Melnikov方法.

在接下來的近20年中,人們在研究同宿軌的保持性時,大都采用幾何的方法.直到1980年,在文獻[10]中,S. N. Chow等從幾分析的觀點出發(fā),考慮如下系統(tǒng)的同宿軌問題

(4)

其中f(t+T)=f(t).很顯然,當λ=(λ1,λ2)=(0,0)時,系統(tǒng)(4)有一對同宿軌,并且(0,0)也是當λ=(0,0)時,系統(tǒng)(4)的雙曲平衡點.他們在參數(shù)原點附近找到一個領(lǐng)域U以及通過原點的曲線Cm、CM,Cm、CM將U分成4個部分.當參數(shù)在其中的2個部分時,系統(tǒng)(4)會出現(xiàn)同宿軌;當參數(shù)在另外的兩個部分時,系統(tǒng)(4)就不會出現(xiàn)同宿軌.

現(xiàn)在對(3)式作一些假設(shè):

(A1)f和g都是C3的;

(A2)f(0)=0并且矩陣Df(0)的特征值的實部不等于零;

(A3) 系統(tǒng)(1)有一條同宿于原點的同宿軌;

(A4)g(0,t,)=0;

(A5)g(x,t,)=g(x,t+T,).

到1984年,K. J. Palmer[7]應(yīng)用分析的方法,在方程(1)有一條非退化的同宿軌的假設(shè)下,將文獻[10]中的結(jié)果推進到RN.在文獻[7]中,K. J. Palmer不僅得到了這條非退化同宿軌得到保持的條件,還給出了關(guān)于(3)的“Shadowing Lemma”.具體情況如下:

令n為正整數(shù),為ψn雙邊無窮序列所構(gòu)成的集合:a=(…,a-1,a0,a1,…),其中ak∈{0,1,…,n-1}.在乘積拓撲下,ψn是一個完全不連通的緊Housdorff空間(Cantor集).定義同胚映射β為(β(a))k=ak+1,β常稱為Bernoulli平移.在文獻[7]中有下面的結(jié)論:

定理2[7]在假設(shè)(A1)~(A5)下,如果方程(3)有一個T-周期解u和另一個解v滿足:

(I) (3)式沿著v的線性變分方程在(-∞,∞)上有指數(shù)二分性;

(II) |v(t)-u(t)|→0當|t|→∞.

|xa(t+(2k-1)mT)-v(t+akT)|≤,

其中k為整數(shù),-mT≤t≤mT.映射φ(a)=xa(0)是RN中的一個緊子集上的同胚,在這個緊子集上,(3)式的解的周期映射F的2m-次迭代F2m是不變的且滿足:F2m°φ=φ°β.

定理2常常用來證明具有周期映射的系統(tǒng),如果存在橫截的同宿軌,則在橫截的同宿軌附近會出現(xiàn)馬蹄形混沌.因為定理2是說,對于解v,它有n段相應(yīng)于時間[-mT,mt],[-(m-1)T,(m+1)T],…,[-(m-n+1)T,(m+n-T)]的弧,周期系統(tǒng)有一條在這些弧之間可以任意轉(zhuǎn)換的軌道xa,它在每一時間段[(2k-2)mT,2kmT]上“shadow”了這些弧.

在這之前,人們大都在做關(guān)于非退化同宿軌方面的工作,J. K. Hale在文獻[11]中建議考慮帶多參數(shù)的具有退化同宿軌的分岔問題.20世紀90年代,許多人[12-19]開始研究具有兩個參數(shù)的帶退化同宿軌的問題:g(x,t,)=1g1(x,t,)+2g2(x,t,).在文獻[15]中,J. Gruendler考慮了g不依賴于時間t的自治擾動,在文獻[16]中,他將擾動推進到一般的非自治擾動.更進一步,如果擾動g是周期的,J. Gruendler在文獻[17]中證明,被保持下來的同宿軌是橫截的,因此周期擾動系統(tǒng)就具有混沌特性.在考慮退化的同宿軌時,擾動函數(shù)不僅依賴于沿著同宿軌的切方向,還有沿著同宿軌的法方向;而如果同宿軌是非退化的,則只有切方向.為了解決法方向帶來的困難,J. Gruendler先對線性變分方程的解進行分類,分類如下:

引理1[16]在假設(shè)(A1)~(A3)下,方程(2)存在矩陣解U,正常數(shù)K,α以及4個投影算子Pss、Psu、Pus、Puu滿足Pss+Psu+Pus+Puu=I并且,

(a) 當0≤s≤t時,|U(t)(Pss+Psu)U(s)-1|≤Ke2α(s-t),

(b) 當0≤t≤s時,|U(t)(Pus+Puu)U(s)-1|≤Ke2α(t-s),

(c) 當t≤s≤0時,|U(t)(Pss+Pus)U(s)-1|≤Ke2α(t-s),

(d) 當s≤t≤0時,|U(t)(Psu+Puu)U(s)-1|≤Ke2α(s-t).

并且Rank(Pss)=Rank(Puu):=d.

令ui(t)是U(t)的第i-列.則相應(yīng)于投影算子Pss、Psu、Pus、Puu,這4類解為:

?ui∈PusU,

?ui∈PsuU,

?ui∈PuuU,

?ui∈PssU.

不失一般性,可以假設(shè):

令U-1為U的逆,則有:

PuuU=[u1,…,ud],

PssU=[ud+1,…,u2d].

引入記號,令

Φi(λ,,θ)

其中

J. Gruendler在文獻[16]中得到下面的結(jié)論:

定理3[16]在假設(shè)(A1)~(A4)下,如果存在θ使得(Φi(λ(θ),(θ),θ))=0(λ(θ),(θ))θ,并且矩陣C(θ)=(cij(θ))(d-1)×(d-1)滿秩:

cij(θ)=ηij+1-d(θ),j=d,d+1,

則存在開集0∈I?R以及可微函數(shù)ψ:I→R2,使得方程(3)在=s2((θ)+ψ(s))時有同宿軌,s∈I.

在1996年,J. Gruendler在文獻[17]中推廣文獻[13]關(guān)于混沌的結(jié)果證明了:如果擾動函數(shù)是周期的,則擾動方程的解決定的周期映射在同宿軌附近會出現(xiàn)馬蹄形混沌B,該結(jié)果后來被推廣到高維空間中[21-23].

2 多條同宿軌的并存性

上面的結(jié)論能夠回答這樣的問題:在沒有擾動的系統(tǒng)存在同宿軌的情況下,在適當?shù)臋M截性條件下,擾動系統(tǒng)會出現(xiàn)同宿軌.但不能回答這樣的問題:在沒有擾動的系統(tǒng)的同宿軌是退化的情況下,擾動系統(tǒng)能有多少條同宿軌.這個問題直到最近才有了答案:沿用引理1的符號,C. Zhu等在文獻[24]中證明了,對任意的,擾動系統(tǒng)可以存在條不同的同宿軌.在(3)式中,研究者們把∈R作為參數(shù),這是一個一維的擾動問題.如果增加擾動函數(shù)的自由度,將整個函數(shù)空間C3(RN×R,RN)作為擾動參數(shù),則問題就變?yōu)橄旅娴膯栴}:

(5)

其中‖g‖C3很小.在C3(RN×R,RN)中定義子空間:

={g∈C3(RN×R,RN)|g(0,t)=0,

C. Zhu等在文獻[24]中得到了下面的結(jié)論:

定理4[24]如果假設(shè)(A1)~(A3)成立,并且ζijj≠0.則在中存在領(lǐng)域和d個余維為kd的經(jīng)過原點的子流形Γk,k=1,…,d,使得當g∈∩(Γk(Γk+1∪…∪Γd))時,方程(5)有k個不同的同宿軌.

以上介紹的是正常擾動條件下的同宿軌分岔問題.還有一類擾動—奇異擾動問題:

g(x,t,),

(6)

方程(6)與方程(3)有很大的區(qū)別:前者對參數(shù)是不連續(xù);當把方程(6)轉(zhuǎn)化為等價的積分方程時,積分方程的解的增長性不能較好地控制.基于這些困難C. Zhu等在文獻[25]中考慮了如下的方程的同宿軌的分岔問題:

(x,t,).

(7)

方程中的g任然看做在C3(RN×R×R,RN)中的擾動函數(shù).在引進截斷函數(shù)等新的工具后,作者在文獻[25]中得到與定理4相似的結(jié)果.

文獻[24-25]的工作表明:當沒有擾動的方程的同宿軌是退化的情況下,作適當?shù)臄_動,擾動系統(tǒng)可能會出現(xiàn)從1到d條不同的同宿軌.當擾動系統(tǒng)出現(xiàn)一條同宿軌時(即擾動系統(tǒng)存在同宿軌),文獻[24-25]中的結(jié)果表明:擾動參數(shù)需要d維,即擾動余維為d.與前面的定理2、3相比較,他們的工作表明,如果只考慮擾動系統(tǒng)的同宿軌的存在性,擾動維數(shù)只需要1維就夠了.從這個角度講,文獻[24-25]中的擾動維數(shù)太大,可能擾動系統(tǒng)出現(xiàn)k條同宿軌,并不需要kd維的擾動余維數(shù).這個問題正在考慮中.

3 白噪聲下的同宿軌的保持性

以上討論同宿軌的分岔時,都是確定性系統(tǒng).最近,很多學者[26-31]討論了由Brownian運動引起的隨機過程擾動下,同宿軌的保持性以及由此產(chǎn)生的混沌運動.就一般而言,Brownian運動是一個無界運動,因此這個問題就不是剛才的小擾動問題.

令(Ω,,)表示經(jīng)典的Wiener概率空間,在緊開拓撲下,

Ω={ω(t)|ω(·):R→Rω(0)=0}

dx(t)=f(x(t))dt+g(x(t))°dB(t),

(8)

θtω(·)=ω(t+·)-ω(t).

對任意給定的Δ>0,令:Ω→R定義為:

對每個ω∈Ω,得到由此可以看出,(ω)可以被看做白噪聲在t=0時刻的離散情形.在定義了,得到

(9)

這是一個帶有正態(tài)分布的平穩(wěn)隨機過程.由Brownian的特性,(θtω)幾乎處處無界,且(θtω)可看做白噪聲的離散形式.在文獻[31]中,K. Lu等用幾何的方法,考慮了如下系統(tǒng)的同宿軌的保持性與混沌:

其中μ是小參數(shù),f,g,P,Q在原點附近是Cr的,r>2.假設(shè)f(0,0)=g(0,0)=P(0,0)=Q(0,0)=0,且μ=0時,方程(10)有一條同宿軌γ(t)=(a(t),b(t)),通過在同宿軌附近引入回復(fù)映射,他們得到下面的結(jié)論:

定理5[31]如果存在t∈R使得

b′(t)P(a(t),b(t))-a′(t)Q(a(t),b(t))≠0,

對于有同宿軌或異宿軌的系統(tǒng),在白噪聲下的在同宿軌或異宿軌附近的動力行為還有很多沒有解決.在同宿軌非要進還有另外一種十分重要的現(xiàn)象,次調(diào)和分叉,就是當同宿軌在小擾動下不能保持而破裂,在破裂的同宿軌附近出現(xiàn)周期解的現(xiàn)象[8-9,32-36]等.對于在同宿軌或異宿軌附近發(fā)生的分叉或它們的保持性,還有很多學者得到了很好的結(jié)果,比如文獻[37-52]等等.

[1] Hale J K. Ordinary Differential Equations[M]. New York:Wiley-Interscience,1969.

[2] Chow S N, Hale J K. Methods of Bifurcation Theory[M]. New York:Springer-Verlag,1982.

[3] Palmer K J. Transversal heteroclinic orbits and Cherry’s example of a non-integrable hemiltonian system[J]. J Diff Eqns,1986,65:321-360.

[4] Zeng W. Exponential dichotomies and transversal homoclinic orbits in degenerate cases[J]. J Dyn Diff Eqns,1995,7:521-548.

[5] Melnikov V K. On the stability of the center for time periodic perturbations[J]. Trans Moscow Math Soc,1963,12:1-57.

[6] Neimark J I, Silnikov L P. A case of generation of periodic motions[J]. Soviet Math Docl,1965,6:1261-1264.

[7] Palmer K J. Exponential dichotomies and transversal homoclinic points[J]. J Diff Eqns,1984,55:225-256.

[8] Silnikov L P. A case of the existence of a countable number of periodic motions[J]. Soviet Math Dokl,1965,6:163-166.

[9] Silnikov L P. On a Poincaré-Birkhoff problem[J]. Math USSR-Sb,1967,3:353-371.

[10] Chow S N, Hale J K, Mallet-Paret J. An example of bifurcation to homoclinic orbits[J]. J Diff Eqns,1980,37:551-573.

[11] Hale J K. Bifurcation theory and applications[C]//Lecture Notes in Mathematics. Berlin:Springer-Verlag,1984,1057:106-151.

[12] Battelli F, Lazzari C. Exponential dichotomies, heteroclinic orbits, and Melnikov functions[J]. J Diff Eqns,1990,86:342-366.

[13] Battelli F, Palmer K J. Tangencies between stable and unstable manifolds[J]. Proc Roy Soc Edin,1992,A121:73-90.

[15] Gruendler J. Homoclionic solutions for autonomous systems in arbitrary dimension[J]. SIAM J Math Anal,1992,23:702-721.

[16] Gruendler J. Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations[J]. J Diff Eqns,1995,122:1-26.

[17] Gruendler J. The existence of transversal homoclinic solutions for higher order equations[J]. J Diff Eqns,1996,130:307-320.

[18] Hale J K, Lin X B. Heteroclinic orbits for retarded functional differential equations[J]. J Diff Eqns,1986,65:175-202.

[19] Knobloch J. Bifurcation of degenerate homoclinic orbits in reversible and conservative systems[J]. J Dyn Diff Eqns,1997,9:427-444.

[20] Battelli F, Palmer K J. Chaos in the Duffing equation[J]. J Diff Eqns,1993,101:276-301.

[21] Luo G, Zhu C. Transversal homoclinic orbits and chaos for functional differential equations[J]. Nonlinear Anal:TMA,2009,71:6254-6264.

[22] Zhu C, Luo G, Shu Y. The existences of transverse homoclinic solutions and chaos for parabolic equations[J]. J Math Anal Appl,2007,335:626-641.

[23] Awrejcewicz J, Holicke M M. Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods[M]. Singapore:World Scientific,2007.

[24] Zhu C, Zhang W. Linearly independent homoclinic bifurcations parameterized by a small function[J]. J Diff Eqns,2007,240:38-57.

[25] Zhu C, Luo G, Lan K. Multiple homoclinic solutions for singular differential equations[J]. Ann Inst H Poincare:AN,2010,27:917-936.

[26] Arnold L. Random Dynamical Systems[M]. New York:Springer-Verlag,1998.

[27] Jaeger L, Kantz H. Homoclinic tangencies and non-normal Jacobians-effects of noise in nonhyperbolic chaotic systems[J]. Physica,1997,D105:79-96.

[28] Kennedy J, York J. Topological horseshoes[J]. Trans Am Math Soc,2001,353:3513-2530.

[29] Lu K, Wang Q. Chaos in differential equations driven by a nonautonomous force[J]. Nonlinearity,2010,23:2935-2975.

[30] Lu K, Wang Q. Chaos behavior in differential equations driven by a Brownian motion[J]. J Diff Eqns,2011,251:2853-2895.

[31] Chow S N, Deng B, Terman D. The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits[J]. SIAM J Math Anal,1990,21:179-204.

[32] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[M]. New York:Springer-Verlag,1983.

[33] Hale J K, Spezamiglio A. Perturbation of homoclinics and subharmonics in Duffing’s equation[J]. Nonlinear Anal:TMA,1985,9:181-192.

[34] He Z, Zhang W. Subharmonic bifurcations in a perturbed nonlinear oscillation[J]. Nonlinear Anal:TMA,2005,61:1057-1091.

[35] Zhu C. The coexistence of subharmonics bifurcated from homoclinic orbits in singular systems[J]. Nonlinearity,2008,21:285-303.

[36] Bulsara A R, Schieve W C, Jacobs E W. Homoclinic chaos in systems perturbed by weak Langevin noise[J]. Phys Rev,1990,A41:668-681.

[37] Deng G, Zhu D. Homoclinic and heteroclinic orbits for near-integrable coupled nonlinear Schr?dinger equations[J]. Nonlinear Analysis:TMA,2010,73:817-827.

[38] Freddy D, Li C, Zhang Z. Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops[J]. J Diff Eqns,1997,139:146-193.

[39] Gan S, Wen L. Heteroclinic cycles and homoclinic closures for generic diffeomorphisms[J]. J Dyn Diff Eqns,2003,15:451-471.

[40] Han M, Hu S, Liu X. On the stability of double homoclinic and heteroclinic cycles[J]. Nonlinear Anal:TMA,2003,53:701-713.

[41] Li W, Lu K. Sternberg theorems for random dynamical systems[J]. Commun Pure Appl Math,2005,58:941-988.

[42] Lin X. Using Melnikov’s method to solve Silnikov’s problem[J]. Proc Roy Soc Edin,1990,A116:295-325.

[43] Lin X, Vivancos I B. Heteroclinic and periodic cycles in a perturbed convection model[J]. J Diff Eqns,2002,182:219-265.

[44] Liu B, Zanolin F. Boundedness of solutions of nonlinear differential equations[J]. J Diff Eqns,1998,144:66-98.

[45] Luo G, Liang J, Zhu C. The transversal homoclinic solutions and chaos for stochastic ordinary differential equations[J/OL]. J Math Anal Appl,2013,doi:10.1016/j.jmaa.2013.10.055.

[46] Palmer K J. Exponential dichotomies for almost periodic equation[J]. Proc Am Math Soc,1987,101:283-298.

[47] Palmer K J, Stoffer D. Chaos in almost periodic systems[J]. Z Angew Math Phys,1989,40:592-602.

[48] Palmer K J. Existence of transversal homoclinic points in a degenerate case[J]. Rocky Mount J Math,1990,20:1099-1118.

[49] Wiggins S. Global bifurcations and chaos-analytical methods[J]. New York:Springer-Verlag,1988.

[50] Zhang W. Bifurcation of homoclinics in a nonlinear oscillation[J]. Acta Math Sinica:Engl,1989,5:170-184.

[51] Deng B. The bifurcations of countable connections from a twisted heteroclinic loop[J]. SIAM J Math Anal,1991,22:653-679.

[52] Holmes P, Marsden J. Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom[J]. Commun Math Phys,1981,82:523-544.

猜你喜歡
系統(tǒng)
Smartflower POP 一體式光伏系統(tǒng)
WJ-700無人機系統(tǒng)
ZC系列無人機遙感系統(tǒng)
北京測繪(2020年12期)2020-12-29 01:33:58
基于PowerPC+FPGA顯示系統(tǒng)
基于UG的發(fā)射箱自動化虛擬裝配系統(tǒng)開發(fā)
半沸制皂系統(tǒng)(下)
FAO系統(tǒng)特有功能分析及互聯(lián)互通探討
連通與提升系統(tǒng)的最后一塊拼圖 Audiolab 傲立 M-DAC mini
一德系統(tǒng) 德行天下
PLC在多段調(diào)速系統(tǒng)中的應(yīng)用
主站蜘蛛池模板: 亚洲首页在线观看| 69av在线| 国产精品密蕾丝视频| 色亚洲激情综合精品无码视频| 成人国产免费| 国产丝袜精品| 5388国产亚洲欧美在线观看| 免费人成在线观看成人片| 青青草国产免费国产| 国产午夜看片| 日韩欧美高清视频| 日韩第九页| 亚洲男人的天堂在线观看| 久久精品无码专区免费| 91网红精品在线观看| 中日韩一区二区三区中文免费视频 | 福利片91| 久久亚洲综合伊人| 国产正在播放| 九九九久久国产精品| 欧美另类视频一区二区三区| 亚洲天堂成人| 国产在线视频自拍| 欧美午夜网| 欧美黑人欧美精品刺激| 亚洲人成网站在线播放2019| 亚洲AV无码乱码在线观看代蜜桃| 人妻中文字幕无码久久一区| 美女被操91视频| 中文字幕第4页| 57pao国产成视频免费播放| 亚洲色无码专线精品观看| 成人自拍视频在线观看| 成人中文字幕在线| 日本高清成本人视频一区| 伊人无码视屏| 欧美精品黑人粗大| 国产草草影院18成年视频| 亚洲中文字幕无码mv| 午夜国产精品视频| 日韩免费毛片视频| 91娇喘视频| 日韩高清欧美| 一级黄色片网| 国产成年女人特黄特色毛片免| 高清无码一本到东京热| 亚洲国产第一区二区香蕉| a级毛片免费网站| 精品亚洲麻豆1区2区3区| 精品综合久久久久久97超人该| 啪啪永久免费av| 91黄色在线观看| 亚洲天堂网站在线| 色偷偷一区二区三区| 正在播放久久| 91探花在线观看国产最新| 色综合a怡红院怡红院首页| 日韩成人午夜| 亚洲an第二区国产精品| 久久窝窝国产精品午夜看片| 国产激情无码一区二区三区免费| 不卡无码网| 青青草原国产| 久久这里只有精品2| 第一页亚洲| 人妻少妇乱子伦精品无码专区毛片| 国产亚洲精品97AA片在线播放| 久综合日韩| 国产国产人成免费视频77777| 亚洲无码视频图片| 无码啪啪精品天堂浪潮av | 一区二区无码在线视频| 99精品国产自在现线观看| 国产成人啪视频一区二区三区 | 久久久久久国产精品mv| 在线观看欧美国产| 久草视频中文| 免费不卡视频| 67194亚洲无码| 久久一色本道亚洲| 超碰色了色| 国产在线一区视频|