999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Biharmonic Spacelike Submanifolds in Lorentzian Product Space n(c)× R1

2014-03-19 09:33:14LIUJianchengSUAnle
關鍵詞:數學

LIU Jiancheng, SU Anle

(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu)

for any compact subsetΩofM. Using the first variational formula (due to G. Y. Jiang, see [2]) one sees thatφis a biharmonic map if and only if its bitension field vanishes identically, i.e.

τ2(φ):=△φτ(φ)-

(1)

It is well known fromτ(φ)=mHthat an isometric immersion is minimal (|H|=0) if and only if it is harmonic (τ(φ)=0). So a minimal submanifold is trivially biharmonic, and we call a nonharmonic biharmonic submanifold a proper biharmonic submanifold.

The study of proper biharmonic submanifolds is nowadays becoming a very active subject and its popularity was initiated with the challenging conjecture of B. Y. Chen[3]: Any biharmonic submanifold in the Euclidean space is minimal. Due to some nonexistence results (see [4-5]) the Chen conjecture was generalized to (see [6]): Any biharmonic submanifold in a Riemannian manifold with non-positive sectional curvature is minimal. A. Balmus, S. Montaldo, C. Oniciuc, R. Caddeo and E. Loubeau et al. had studied the biharmonic submanifolds in many general aspects, and got some classification results (see [7-9] and the references therein).

Another class of interesting pseudo-Riemannian manifolds is that of Lorentzian product manifoldsn(c)×R1, withn(c) ann-dimensional Riemannian manifold with constant sectional curvaturecandR1one-dimensional pseudo-Riemannian space with a metric -dt2. These spaces play an important role in the general relativity, see, for example, [12-14].

This paper studies biharmonic spacelike submanifolds in Lorentzian product manifoldsn(c)×R1. We first prove an invariant biharmonic equation in Section 2 for such submanifolds in general pseudo-Riemannian manifolds (see Theorem 1). Then we apply it to Lorentzian product manifoldsn(c)×R1, and obtain a key Theorem (see Theorem 2), which gives a sufficient and necessary condition for spacelike submanifolds with parallel mean curvature vector fields to be a biharmonic ones. As a result, we prove some nonexistence theorems for proper biharmonic spacelike submanifolds or hypersurfaces (see Corollaries 4, 5). These all corollaries can be viewed as the dual of their Riemannian version.

1 Preliminaries

In this section, we recall some basic notations and facts concerning Lorentzian product space, tension field of an isometric immersion, that will appear along the paper.

From now on, we consider a special Lorentzian product spacen(c)×R1, withn(c) be ann-dimensional Riemannian manifold with constant sectional curvaturec. For simplicity, we just writen(c)×R1. For anm-dimensional immersed submanifoldΣminif the induced metric viaφonΣmis positive definite, then we callΣma spacelike submanifold ofSet

?t=T+N,

(2)

〈π*X,π*Z〉〈π*Y,π*W〉}=

c{〈Y,Z〉〈X,W〉+〈Y,?t〉〈?t,Z〉〈X,W〉+

〈Y,Z〉〈X,?t〉〈?t,W〉-〈X,Z〉〈Y,W〉-

〈X,?t〉〈?t,Z〉〈Y,W〉-〈X,Z〉〈Y,?t〉〈?t,W〉}.

Therefore, we obtain

〈Y,?t〉〈?t,Z〉X+〈Y,Z〉〈X,?t〉?t-

〈X,?t〉〈?t,Z〉Y-〈X,Z〉〈Y,?t〉?t}.

(3)

⊕νΣm.

(4)

dφ(XY)=B(X,Y),

(5)

(6)

2 Main results and its proofs

(7)

whereAdenotes the shape operator,Bthe second fundamental form,Hthe mean curvature vector field, and⊥, △⊥the normal connection and the Laplacian on the normal bundle ofΣminrepectively.

(8)

Also

△⊥H-TrA(·)-

TrB(·,AH·)-Tr(·)AH(·).

(9)

Tr(·)AH(·)=

(10)

Meanwhile

Substituting (11) into (10), we have

which, together with (9), yields that

△φH=△⊥H-2TrA(·)-

(12)

Finally, putting (12) into (8) and collecting all the tangent and normal parts of the bitension field separately, we complete the proof of Theorem 1.

Remark1Except the squared norm |H|2of the mean curvature vector fieldHis a minus one whenHis timelike, the biharmonic equation (7) coincides with that in Riemannian case formally (cf. Theorem 2.1 of [7]). Using moving frame method, Ouyang also obtained a local biharmonic equation for spacelike submanifolds in pesudo-Riemannian manifolds, we refer readers to Proposition 3.1 of [10].

Theorem2A PMC spacelike submanifoldΣm,m≥2, in Lorentz product spacen(c)×R1is biharmonic if and only if

Moreover, the mean curvature vector fieldHmust be spacelike ones.

ProofFrom (3) we know

(m+|T|2)H-m〈H,?t〉N}.

Putting into (7), we get

(13)

SinceΣmis a PMC spacelike submanifold, (13) becomes

(14)

for anyX,Y∈Γ(TΣm). Thus 〈H,?t〉=0 onΣm. It is a contradiction.

Now, we proveH⊥?tfrom the second equation of (14). Suppose on the contrary that there exists a pointp∈Σmsuch that 〈H,?t〉(p)≠0, and then 〈H,?t〉≠0 on a neighborhood(p) ofp, soT|=0. This fact together with (2) leads to 〈X,?t〉=0 on(p) for any vector fieldX∈Γ(TΣm). On the other hand, because ofwe get

for anyX,Y∈Γ(TΣm). Thus 〈H,?t〉=0 on the neighborhood(p), which is a contradiction. Consequently, we haveH⊥?teverywhere onΣm.

According to the conclusionH⊥?t, the first equation of (14) reduces to

TrB(·,AH·)=c(m+|T|2)H.

Thus, we obtain

which completes the proof of Theorem 2.

In the following, by using Theorem 2, we shall prove that the tangent part of ?thas constant length for a proper biharmonic PMC spacelike surface. Also, we shall derive a condition for PMC biharmonic spacelike submanifolds to be the maximal ones and prove a nonexistence result for biharmonic hypersurfaces.

LetΣ2be a biharmonic PMC spacelike surface inn(c)×R1. According to [15], we note that the mapp∈Σ2→(AH-μI)(p), whereμa constant, is analytic and, therefore, eitherΣ2is a pseudo-umbilical surface (at every point), orH(p) is not an umbilical direction for any pointp, orH(p) is an umbilical direction on a closed set without interior points. We denote byWthe set of points whereHis not an umbilical direction. In the second case,Wcoincides withΣ2, and in the third one,Wis an open dense set inΣ2.

Corollary3IfΣ2is a proper biharmonic PMC spacelike surface inn(c)×R1, then the tangent partTof ?thas constant length.

ProofIt follows from Theorem 2 that 〈H,?t〉=0, which implies

for any tangent vector fieldX, thenAHT=0.

If the surface is pseudo-umbilical, i.e.,AH-|H|2I=0, then we have 0=AHT=|H|2T, i.e.,T=0.

Now, assume thatΣ2is non-pseudo-umbilical, and we shall work onWdefined above. Taking similar observation as done in Lemma 1 of [19], at any point inW, there exists a local orthonormal frame field that diagonalizesAUfor any normal vector fieldUdefined onW. So we can consider {E1,E2} an orthonormal basis at an arbitrary pointp∈Wthat diagonalizesAHandAN. It follows from Theorem 2 thatH⊥?tand |AH|2=c(2+|T|2)|H|2, furthermore,H⊥N. Hence we have TrAN=2〈H,N〉=0. The matrices ofAHandANwith repect to {E1,E2} are

Moreover

Corollary4Suppose thatΣmbe a PMC biharmonic spacelike submanifold inn(c)×R1. Ifc≤0 or ‖B‖2<(m+|T|2)c, then |H|=0, i.e.Σmis a maximal.

ProofSinceΣmbe a PMC biharmonic spacelike submanifold, we know from Theorem 2 that

|AH|2=c(m+|T|2)|H|2.

(15)

Whenc<0 and by Theorem 2, 〈H,?t〉=0.His a spacelike vector field, the right hand side of (15) is non-positive, the conclusion is obvious.

Moreover, we get

(m+|T|2)c≤‖B‖2<(m+|T|2)c,

i.e., (m+|T|2)c<(m+|T|2)c, which is a contradiction. Consequently, |H|=0, and we end the proof of Corollary 4.

Corollary5There exist no nonminimal biharmonic spacelike hypersurfaces with constant mean curvature inn(c)×R1.

ProofFor a biharmonic spacelike submanifold inn(c)×R1with constant mean curvature, Theorem 2 tells us that its mean curvature vectorHis a spacelike one, so Corollary 5 follows immediately.

致謝甘肅省高等學校基本科研業務費對本文給予了資助,謹致謝意.

[1] Eells J, Sampson J H. Harmonic mappings of Riemannian manifolds[J]. Am J Math,1964,86:109-160.

[2] 姜國英. 2-調和映照及其第一、第二變分公式[J]. 數學年刊,1986,A7(4):389-402.

[3] Chen B Y. Some open problems and conjectures on submanifolds of finite type[J]. Soochow J Math,1991,17(2):169-188.

[5] Caddeo R, Montaldo S, Oniciuc C. Biharmonic submanifolds in spheres[J]. Israel J Math,2002,130:109-123.

[6] Caddeo R, Montaldo S, Oniciuc C. Biharmonic submanifolds of3[J]. Internat J Math,2001,12(8):867-876.

[8] Liu J C, Du L. Biharmonic submanifolds inδ-pinched Riemannian manifolds[J]. J Math Research & Expo,2010,30(5):891-896.

[9] Montaldo S, Oniciuc C. A short survey on biharmonic maps between Riemannian manifolds[J]. Revista de La Unión Matemtica Argentina,2006,47(2):1-22.

[10] 歐陽崇珍. 偽黎曼空間型的2-調和類空子流形[J]. 數學年刊,2000,A21(6):649-654.

[11] Zhang W. Biharmonic space-like hypersurfaces in pseudo-Riemannian space[J/OL]. arXiv:0808.1346v1,2008.

[12] Albujer A L. New examples of entire maximal graphs in2×R1[J]. Diff Geom Appl,2008,26(4):456-462.

[13] Albujer A L, Alías L J. Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces[J]. J Geom Phys,2009,59(5):620-631.

[14] Albujer A L, Camargo F E C, de Lima H F. Complete spacelike hypersurfaces with constant mean curvature in -R×n[J]. J Math Anal Appl,2010,368(2):650-657.

[15] Fetcu D, Oniciuc C, Rosenberg H. Biharmonic submanifolds with parallel mean curvature inn×R[J]. J Geom Anal,2013,23(4):2158-2176.

[16] Kobayashi S, Nomizu K. Foundations of Differential Geometry[C]//Pure and Applied Mathematics. New York:Wiley,1969:15.

[17] Baird P, Wood J C. Harmonic Morphisms between Riemannian Manifolds[C]//London Mathematical Society Monographs. Oxford:Oxford University Press,2003:29.

[18] Chen B Y. Pseudo-Riemannian Geometry,δ-Invariants and Applications[M]. New Jersey:World Scientific Publishing,2011.

[19] Alencar H, do Carmo M, Tribuzy R. A Hopf theorem for ambient spaces of dimensions higher than three[J]. J Diff Geom,2010,84:1-17.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 九色视频线上播放| 国产毛片高清一级国语 | 成人福利视频网| 国产免费羞羞视频| 人妻无码中文字幕第一区| 一区二区三区毛片无码| 国产另类视频| 又大又硬又爽免费视频| 午夜一级做a爰片久久毛片| 九色视频最新网址| 国产精品手机在线观看你懂的| 热久久这里是精品6免费观看| 国产白浆在线| 真实国产乱子伦高清| 久久精品嫩草研究院| 亚洲国产精品成人久久综合影院| 色135综合网| 国产成人资源| 丁香婷婷久久| 香蕉eeww99国产精选播放| 欧美精品H在线播放| 国产精品无码翘臀在线看纯欲| 欧美一道本| 热热久久狠狠偷偷色男同| 国产精品无码久久久久久| 激情午夜婷婷| 日本在线视频免费| 亚洲男人的天堂网| 91亚洲影院| 精品久久久久久久久久久| 波多野衣结在线精品二区| 国产丝袜第一页| 午夜视频日本| 成色7777精品在线| 2048国产精品原创综合在线| 国产18在线| 97人妻精品专区久久久久| 中文字幕免费在线视频| 欧美亚洲欧美区| 一本色道久久88| 不卡无码网| 国产精品免费福利久久播放 | 97国产精品视频自在拍| 99re经典视频在线| 91网站国产| 亚洲无码不卡网| 免费无码AV片在线观看国产| 国产美女91呻吟求| 国产精品主播| 国产日韩精品一区在线不卡| 欧美日韩一区二区三| 六月婷婷综合| 韩日无码在线不卡| 麻豆国产精品视频| 狠狠色丁香婷婷| 久久久久久尹人网香蕉 | 成人精品区| 日韩欧美国产综合| 沈阳少妇高潮在线| 色成人亚洲| 热re99久久精品国99热| 久久久精品无码一二三区| 国产Av无码精品色午夜| 本亚洲精品网站| 欧美在线中文字幕| 成人自拍视频在线观看| 老司机aⅴ在线精品导航| 日韩精品一区二区三区大桥未久 | 久草视频中文| 青青草原国产精品啪啪视频| 久久青青草原亚洲av无码| 91精品国产自产在线老师啪l| 国产欧美专区在线观看| 久久精品无码国产一区二区三区| 国产一区在线观看无码| 综合人妻久久一区二区精品| 色爽网免费视频| 国产一级二级三级毛片| 91丝袜美腿高跟国产极品老师| 久久无码免费束人妻| av一区二区三区在线观看| 无码综合天天久久综合网|