徐云峰劉松堅
(1.廣州軍區機關門診部檢驗科,510080;2.廣州軍區療養院檢驗科,510515)
細胞凋亡是一種程序性死亡,其形態學特征是質膜出泡、細胞皺縮、染色體濃縮、染色體DNA裂解[1]。有兩種途徑可導致細胞凋亡:①外源性凋亡途徑,又被稱為死亡受體通路,可由胞外腫瘤壞死因子受體(TNFR)或Fas受體(FasR)引發。②內源性凋亡途徑,又被稱為線粒體/細胞色素C介導的通路,可通過Bcl-2家族成員調控。Bcl-2家族是細胞凋亡信號轉導途徑中關鍵的凋亡調節因子,現就近年來Bcl-2家族的結構、家族成員之間的相互作用、信號通路的調控以及與腫瘤的關系等作一綜述。
根據在細胞凋亡過程中發揮的生物學效應不同,Bcl-2家族可分為3類[2],第1類是抗凋亡蛋白,主要有Bcl-2、Bcl-xl、Bcl-w和Mcl-1等;第2類是促凋亡蛋白,主要包括Bax、Bak和Bok等;第3類是促凋亡蛋白中的特殊成員,主要有Bad、Bid、Bim、Bik、Puma和Noxa等。大部分Bcl-2家族蛋白主要由兩大結構域構成,即位于羧基末端的跨膜結構域(TM)和不同數量的Bcl-2同源結構域(BH)。抗凋亡蛋白和促凋亡蛋白的結構中均含有BH1-4結構域[3],促凋亡蛋白中的特殊成員僅含有BH3結構域,又被稱為BH3-only成員[4]。
Bcl-2家族是細胞凋亡信號轉導途徑中關鍵的凋亡調節因子,它們共同參與一個非常復雜的相互作用機制以調控細胞凋亡。
Bcl-2家族在線粒體介導的細胞凋亡中發揮重要作用。Bcl-2家族的抗凋亡蛋白Bcl-2、Bcl-xl主要分布于線粒體膜內外側,其中Bcl-2還存在于核膜以及內質網膜上,通常在線粒體外膜發揮抗凋亡作用,以維持膜的完整性。Bcl-2家族的促凋亡蛋白Bax一般出現在胞漿中,當細胞響應損傷或刺激等凋亡信號后,Bax將重新定位于線粒體表面,通過破壞線粒體膜的完整性發揮作用[5]。
BH3-only蛋白是細胞應對外界凋亡信號的最主要方式,當BH3-only成員包括Bad、Bid、Bim、Bik和Puma等接收到凋亡信號后,BH3-only蛋白的表達增多,且發生翻譯后修飾,通過兩種機制發揮促凋亡作用[6-8]:一種是與Bcl-2家族中的抗凋亡蛋白形成對抗[9-11],一種是激活促凋亡蛋白Bax和Bak[12-15]。
不僅Bcl-2家族成員的表達可調控細胞凋亡,Bcl-2家族成員的翻譯后修飾也可調節細胞凋亡。Bcl-2家族成員受到許多翻譯后修飾,尤其是磷酸化和泛素化,但是修飾后的生物學功能受到爭議[16]。例如:抗凋亡蛋白在絲氨酸或蘇氨酸殘基處發生磷酸化后,可上調也可下調其活性和穩定性,也可誘導細胞周期停滯以及改變細胞內定位等[16-17]。近期研究發現,紡錘體抑制劑可誘導Bcl-2在Ser70的磷酸化,促進Bcl-2與Bak、Bim的結合,從而提高細胞的化療耐受力[18]。
Mcl-1蛋白在轉錄、翻譯以及蛋白質轉換水平均受到調控。非泛素依賴途徑可降解Mcl-1,而去泛素化酶可提高Mcl-1的穩定性[19-20]。最新研究還發現,Mcl-1的N端也可影響其穩定性[19]。
BH3-only蛋白可通過不同途徑進行調控。當細胞內DNA發生損傷,P53可被ATM和ATR信號通路激活,進而作為轉錄因子參與調控Puma的轉錄;Puma蛋白在多個位點如Ser10處發生磷酸化可誘導其蛋白發生蛋白酶體降解,從而下調其表達[21];另外研究還發現,胞漿中非磷酸化的Bad可與膜上的Bcl-2或Bcl-xl形成雜二聚體誘導細胞凋亡,當被14-3-3蛋白磷酸化后,Bad則被封閉在胞漿中[22]。
腫瘤的發生通常與Bcl-2家族成員的表達異常有關。研究發現,過表達抗凋亡蛋白Bcl-2與包括淋巴瘤、慢性淋巴細胞白血病等多種惡性腫瘤的發生發展有關[23-24];敲除促凋亡基因如Bim[25]、Puma[26-27]、Bad[28]和Bax[29]等可誘導多種腫瘤的發生。
在90%的人的濾泡性B細胞淋巴瘤中,t(14;18)染色體發生易位,引起Bcl-2基因過表達從而抑制淋巴細胞的凋亡[30];在多種腫瘤細胞中,Mcl-1和Bcl-xl同樣過表達[31];另外,在多種惡性腫瘤中,Bim和Puma的啟動子發生高度甲基化,其蛋白表達降低,從而抑制腫瘤細胞的凋亡[26,32]。
近期研究還發現,Bcl-2家族成員的表達與腫瘤細胞對化療藥物的耐受性密切相關。例如,Bcl-2基因的過表達可使肺小細胞癌和白血病/淋巴瘤細胞對化療藥阿糖胞苷產生耐藥性[33];Puma、Noxa和Bim的過表達可降低淋巴瘤細胞對DNA損傷-誘導藥物的耐藥性[34];Bim的過表達可誘導糖皮質激素[35]、紫杉醇[36]殺死腫瘤細胞。因此,提高BH3-only蛋白的表達可能有助于腫瘤的治療。
近年來,有關Bcl-2家族調控腫瘤細胞凋亡的機制研究越來越多,但是有關在凋亡過程中Bcl-2家族成員之間相互作用機制、膜結構如何調節各成員之間的相互作用等還有待進一步研究。
大量有關細胞凋亡的分子機制研究表明Bcl-2家族可用于腫瘤的靶向治療。因此,我們可以設計一些高效且特異性好的抗腫瘤藥物,通過抑制抗凋亡蛋白的表達或激活促凋亡蛋白的表達以治療惡性腫瘤。
[1]Doonan F,Cotter TG.Morphological assessment of apoptosis[J].Methods,2008,44(3):200-204.
[2]Hsu SY,Hsueh AJ.Tissue-specific Bcl-2 protein partners in apoptosis:An ovarian paradigm[J].Phys iol Rev,2000,80(2):593-614.
[3]Kvansakul M,Yang H,Fairlie WD,et al.Vaccinia virus anti-apoptotic F1L is a novel BCL-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands[J].Cell Death Differ,2008,15(10):1564-1571.
[4]Tsujimoto Y.Cell death regulation by the Bcl-2 protein family in the mitoehondria[J].J Cell Physiol,2003,195(2):158-167.
[5]Wolter KG,Hsu YT,Smith CL,et al.Movement of Bax from the cytosol to mitochondria during apoptosis[J].J Cell Biol,1997,139(5):1281-1292.
[6]Kuwana T,Bouchier-Hayes L,Chipuk JE,et al.BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly[J].Mol Cell,2005,17(4):525-535.
[7]Merino D,Giam M,Hughes PD,et al.The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins[J].J Cell Biol,2009,186(3):355-362.
[8]Llambi F,Moldoveanu T,Tait SW,et al.A Unified model of mammalian BCL-2 protein family interactions at the mitochondria[J].Mol.Cell,2011,44(4):517-531.
[9]Chen L,Willis SN,Wei A,et al.Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function[J].Mol Cell,2005,17(3):393-403.
[10]Willis SN,Fletcher JI,Kaufmann T,et al.Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs,not Bax or Bak[J].Science,2007,315(5813):856-859.
[11]Simon N.Willis,Lin Chen,Grant Dewson,et al.Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL,but not Bcl-2,until displaced by BH3-only proteins[J].Genes Dev,2005,19(11):1294-1305.
[12]Certo M,Del Gaizo Moore V,Nishino M,et al.Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members[J].Cancer Cell,2006,9(5):351-365.
[13]Kim H,Rafiuddin-Shah M,Tu HC,et al.Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies[J].Nature Cell Biol,2006,8(12):1348-1358.
[14]Letai A,Bassik MC,Walensky LD,et al.Distinct BH3 domains either sensitize or activate mitochondrial apoptosis,serving as prototype cancer therapeutics[J].Cancer Cell,2002(2):183-192.
[15]Gavathiotis E,Suzuki M,Davis ML,et al.BAX activation is initiated at a novel interaction site[J].Nature,2008,455(7216):1076-1081.
[16]Kutuk O,Letai A.Regulation of Bcl-2 family proteins by posttranslational modifications[J].Curr Mol Med,2008,8(2):102-118.
[17]Wei Y,Pattingre S,Sinha S,et al.JNK1-mediated phosphorylation of Bcl2 regulates starvation-induced autophagy[J].Mol Cell,2008,30(6):678-688.
[18]Dai H,Ding H,Meng XW,et al.Contribution of Bcl-2 phosphorylation to Bak binding and drug resistance[J].Cancer Res,2013,73(23):6998-7008.
[19]Perciavalle RM,Opferman JT.Delving deeper:MCL-1's contributions to normal and cancer biology[J].Trends Cell Biol,2013,23(1):22-29.
[20]Thomas LW,Lam C,Edwards SW.Mcl-1;the molecular regulation of protein function[J].FEBS Lett,2010,584(14):2981-2989.
[21]Elkholi R,Floros KV,Chipuk JE.The role of BH3-Onlyproteins in tumor cell development,signaling,and treatment[J].Genes Cancer,2011,2(5):523-537.
[22]Zha J,Harada H,Yang E,et al.Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)[J].Cell,1996,87(4):619-628.
[23]McDonnell TJ,Korsmeyer SJ.Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18)[J].Nature,1991,349(6306):254-256.
[24]Kaderi MA,Norberg M,Murray F,et al.The BCL-2promoter(-938C>A)polymorphism does not predict clinical outcome in chronic lymphocytic leukemia[J].Leukemia,2008,22(2):339-343.
[25]Egle A,Harris AW,Bouillet P,et al.Bim is a suppressor of Myc-induced mouse B cell leukemia[J].Proc Natl Acad Sci USA,2004,101(16):6164-6169.
[26]Garrison SP,Jeffers JR,Yang C,et al.Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis[J].Mol Cell Biol,2008,28(17):5391-5402.
[27]Michalak EM,Jansen ES,Happo L,et al.Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis[J].Cell Death Differ,2009,16(5):684-696.
[28]Frenzel A,Labi V,Chmelewskij W,et al.Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad[J].Blood,2010,115(5):995-1005.
[29]Eischen CM,Roussel MF,Korsmeyer SJ,et al.Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis[J].Mol Cell Biol,2001,21(22):7653-7662.
[30]Tsujimoto Y,Finger LR,Yunis J,et al.Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18)chromosome translocation[J].Science,1984,226(4678):1097-1099.
[31]Beroukhim R,Mermel CH,Porter D,et al.The landscape of somatic copy-number alteration across human cancers[J].Nature,2010,463(7283):899-905.
[32]Zantl N,Weirich G,Zall H,et al.Frequent loss of expression of the pro-apoptotic protein Bim in renal cell carcinoma:evidence for contribution to apoptosis resistance[J].Oncogene,2007,26(49):7038-7048.
[33]Tahir SK,Wass J,Joseph MK,et al.Identification of Expression Signatures Predictive of Sensitivity to the Bcl-2 Family Member Inhibitor ABT-263 in Small Cell Lung Carcinoma and Leukemia/Lymphoma Cell Lines[J].Mol Cancer Ther,2010,9(3):545-557.
[34]Happo L,Cragg MS,Phipson B,et al.Maximal killing of lymphoma cells by DNA-damage inducing therapy requires not only the p53 targets Puma and Noxa but also Bim[J].Blood,2010,116(24):5256-5267.
[35]Bachmann PS,Piazza RG,Janes ME,et al.Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia,and its reversal by histone deacetylase inhibition[J].Blood,2010,116(16):3013-3022.
[36]Tan TT,Degenhardt K,Nelson DA,et al.Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy[J].Cancer Cell,2005,7(3):227-238.