,,·, ,,,,
(新疆大學電氣工程學院,新疆 烏魯木齊 830008)
大規模光伏系統的并網有利于緩解能源危機、保護環境,但是其輸出功率具有隨機性、不連續性等特點會對光伏并網電力系統的安全、穩定運行以及電能質量等造成嚴重威脅,因此光伏系統出力預測顯得極為重要。然而,目前光伏系統出力預測在精度方面還遠不能滿足大規模光伏并網電力系統調度的要求,并已成為阻礙光伏發展的主要瓶頸問題之一。因此,亟待針對適應大規模光伏并網電力系統調度的光伏系統出力預測模型進行研究。
光伏系統具有高度非線性特性,其輸出功率主要受太陽輻照強度和溫度的影響。目前大多研究都是基于光伏系統的物理特性進行建模[1-6]。然而,這些傳統方法需要詳細的物理參數。就這些參數尚且不易獲得,推導出的數學模型更不一定準確,因此傳統方法所建模型與實際系統特性相差甚遠,且精度也極為有限。神經網絡建模將建模對象當作一個黑盒子不考慮其物理意義,而是利用歷史數據對神經網絡進行訓練,對建模對象進行識別。因此越來越多的人將神經網絡技術應用于光伏系統中[7-11]。但這些方法都只是在神經網絡上進行處理,而沒有再考慮光伏出力波動特性的基礎上對神經網絡建模后進行二次修正研究。
在上述背景下,首先以傳統反傳播神經網絡作為建模基礎,建立光伏系統出力初步預測模型,再利用由歷史出力數據分析得到的波動量統計規律對其初步預測結果進行修正,建立了具有較高精度的光伏系統出力預測模型。最后,利用實際光伏系統歷史數據進行了算例驗證。
光伏系統的輸出功率受外界條件影響較大,具有隨機性、不連續性等特點。在影響光伏系統出力的諸多因素中,太陽輻照強度和溫度影響最大。太陽輻射強度指在單位時間內垂直投射到單位面積上的太陽輻射能量,從物理意義上講,太陽的輻照是導致光伏電池產生伏特效應的主導因素, 輻照強度的大小直接影響光伏電池出力的大小。在額定范圍內,當溫度一定時, 光伏系統的輸出功率隨著太陽輻照強度的增大而增大。一般情況下,隨著溫度上升光伏系統的轉換效率降低,當輻照強度一定時輸出功率會減小。同時光伏系統的輸出功率變化還具有很強的周期性,包括日變化周期和年變化周期,光伏系統主要是在每天8∶00~17∶00這段時間內輸出功率,并且在大多數時間內它和電力負荷有較好的耦合性,在上午的負荷高峰時段光伏發電系統能較好地提供相當數量的功率,起到調峰的作用[12]。
為了提高預測的精度,所提出的預測思路是:首先基于神經網絡技術對預測時段出力進行初步預測,然后利用歷史出力數據的波動量統計規律對初步預測值進行修正,得到最終預測值。具體預測流程如圖1所示。

圖1 總預測思路
圖2為所選取的BP神經網絡模型,以溫度T和太陽輻照強度C為網絡的輸入量(輸入層輸入),光伏系統的輸出功率P為網絡的輸出(輸出層輸出),I(input)和O(output)分別表示隱含層及其他相應輸入和輸出。f(1)(·)、f(2)(·)和f(3)(·)分別表示輸入層、隱含層和輸出層的激發函數(這里將f(2)(·)和f(3)(·)選擇為sigmoid型函數)。ω表示神經元之間的連接權值,θ表示神經元的閾值。輸入信息沿圖2所示的方向正向傳遞,最后輸出層的輸出與期望值Od比較,將誤差反向傳遞,調整各個權值和閾值的大小,這樣反復操作直至輸出誤差達到允許的范圍。

圖2 BP神經網絡結構圖
設共有n個樣本,對于第n個樣本,輸入輸出關系為
1)輸入層
輸入為T、C

(1)
2)隱含層

(2)

(3)
3)輸出層

(4)

(5)
在目前大家研究的各種預測方法中,由于人工神經網絡能夠建立高度非線性的模型且特別適宜隨機平穩變化過程的模擬,因此光伏系統輸出功率預測也是其應用的一個重要領域。
某種現象的出現一定是由某種原因的作用引發的,光伏系統的輸出功率變化過程亦是如此。光伏系統在某時刻的輸出功率取決于該時刻的太陽輻照強度、溫度等外界情況以及光伏系統本身利用太陽能的能力。影響光伏系統將太陽能轉化成電能的能力的因素比較多,如光伏系統的總容量、電池板的類型、電池板自身的特性曲線、光伏電站的運營水平、電池板的分布等。如果孤立地考察每個影響因素與光伏系統輸出功率之間的關系,往往是非線性的,且對于光伏系統并網電力系統的研究也是沒有實際意義的;但是將這些影響因素作為一個整體考慮,與光伏系統的輸出功率之間一定存在著某種映射關系。因此,光伏系統輸出功率的預測模型必須要能夠高精度地反映這種映射關系。神經網絡的主要優點是能夠通過學習已有樣本信息來建立反映所要處理信息之間的內在聯系的模型。對于光伏系統輸出功率預測初步模型的建模思路是:構建神經網絡,應用歷史的太陽輻照強度、溫度數據和對應的光伏系統輸出功率數據對模型進行訓練,當用大量的歷史數據將其訓練到所要求精度時,該神經網絡模型就能在所要求的精度范圍內模擬作為研究對象的特定光伏系統,即實現初步預測模型的建立。由于訓練模型需要的數據量較大,為了提高程序的運算速度和模型預測的精度,必須先對這些數據進行預處理,再用于模型的訓練,進而得到較準確的初步預測模型,對光伏系統的未來某時段內的輸出功率曲線進行初步預測。具體程序流程如圖3所示。

圖3 基于BP-ANN的光伏出力初步預測流程圖
光伏系統的歷史出力一定存在著特定的出力波動特性,作為研究對象的目標光伏系統其預測出力也一定要滿足該光伏系統歷史出力數據所統計輸出的波動特性,因此提出在初步預測的基礎上,依據歷史波動量統計規律對其進行修正。


(7)
(8)
(9)
修正流程如圖4所示。

圖4 初步預測誤差修正流程圖
以某光伏系統作為研究對象,將該光伏系統某年9月18日的太陽輻照強度、溫度和相應輸出功率數據為分析樣本,該樣本以每隔10 min為一個時間點、共連續75個時間點。圖5、圖6和圖7分別給出了這75個時間點的太陽輻照強度、溫度和相應輸出功率的數據及其變化趨勢,圖8為其歷史出力數據波動量統計圖。用前40個時間點的太陽輻照強度、溫度和相應輸出功率數據做學習樣本對神經網絡進行訓練,最后應用訓練好的神經網絡對該光伏電站后35個時間點的輸出功率進行預測,并與實際輸出功率比較,考證其預測誤差。

圖5 太陽輻照強度歷史數據

圖6 溫度歷史數據

圖7 輸出功率歷史數據
該光伏電站預測模型的最終預測結果如圖9所示,初步預測值、最終預測值和實測值3條曲線對比如圖10所示。從圖10可以看出初步預測值基本上跟蹤了實測值的變化趨勢,但在局部時段出現了畸變點;經過修正后的最終預測值就更加接近于實測值,基本趨于重合。通過仔細觀察可以發現即使是修正后的預測值在某些時段依然存在較大誤差,此現象的出現可能是由于該時段外界條件的急劇變化增強了光伏系統的非線性特性所致。
縱觀全時段可以看出,所提出的預測模型較高精度地反應了作為研究對象的光伏系統外界條件與輸出功率之間的映射關系。預測誤差近似服從正態分布,其均值為0,其方差為σ2=0.960 4,如圖11所示。

圖8 歷史數據波動量統計圖

圖9 40~75段內輸出功率預測值

圖10 40~75段內輸出功率和實際值

圖11 預測誤差概率分布
由圖11可知,預測相對誤差e主要集中于∣e∣≤4.4% 之間。如果誤差落在Δei內的概率為pi,
則Pi可以用公式(10)來計算。
(10)
由式(10)計算可得誤差在∣e∣≤4.4%內的概率為0.958 7,大于4.4%的概率僅為0.041 3。
提出了以傳統反傳播神經網絡作為建模基礎,建立光伏系統出力初步預測模型,再利用歷史出力波動量統計規律對其初步預測結果進行修正建立預測模型,對未來短期內相應時刻的光伏系統出力進行預測。算例結果說明,該預測模型顯著提高了預測精度,較好地模擬了現場光伏系統的實際情況,為從預測太陽輻照強度、溫度到預測功率提供了一種良好的方法。對于研究大規模光伏系統出力預測具有一定的應用價值。
[1] 李乃永,梁軍,趙義術.并網光伏電站的動態建模與穩定性研究[J].中國電機工程學報,2011,3l(10):12-18.
[2] 李晶,許洪牮,趙海翔,等.并網光伏電站動態建模及仿真分析[J].電力系統自動化,2008,32(24):83-87.
[3] 郭立,晁勤,袁鐵江,等.基于工程模型的光伏建模與輸出特性仿真[J].四川電力技術,2011,34(5):89-91.
[4] 張艷霞,趙杰,鄧中原.太陽能光伏發電并網系統的建模和仿真[J].高電壓技術,2010,36(12):3097-3012.
[5] 戴武昌,孔令國,崔柱.大規模光伏并網發電系統建模與運行分析[J].中國電力,2012,45(2):58-63.
[6] 茆美琴,蘇建徽,張國榮,等.大型光伏并網系統的建模與仿真[J].合肥工業大學學報:自然科學版,2005,28(9):1069-1072.
[7] Tamotsu Ninomiya,Akira Takeuchi.AnaIysis of Beat Phenomenon and Chaotic Oscillation in Resonant Switching Converters[J].lndustriat Electronscs,Control ant Instrumentation,1991(1):417-422.
[8] Nagy I.,Denes I.,Hamar J.,et al.Small-signal AnaIysis of a Dual Channel Resonant Buck and Boost Converter[C].Industrial Electronics,2002,ISIE 2002,Proceedings of the 2002 IEEE InternationaI Symposiumon,2002,(4):1279-1284.
[9] 李煒,朱新堅,曹廣益.基于一種改進的BP神經網絡光伏電池建模[J].計算機仿真,2006,23(7):228-290.
[10] 郭亮,陳維榮,賈俊波,等.基于粒子群算法的BP神經網絡光伏電池建模[J].電工電能新技術,2011,30(2):84-87.
[11] 張艷霞,趙杰.基于反饋型神經網絡的光伏系統發電功率預測[J].電力系統保護與控制,2011,39(15):96-101.
[12] 栗然,李廣敏.基于支持向量機回歸的光伏發電出力預測[J].中國電力,2008,41(2):74-77.