張志穎,茍立丹,白端元,周成城,肖洪亮
(1.長春理工大學理學院,長春130022;
2.長春理工大學電子信息工程學院,長春130022)
利用Yang-Baxter方程可研究量子可積問題.當其解為有理解時,它是無周期的,對應于Yangian代數[1-5].Yangian代數是Hopf代數的一種變形,是比Lie代數更大的無窮維代數,是李代數的子代數,其物理基礎為量子可積的統計模型[6-12].Yangian代數本質是無窮維代數,由有限個生成元I和J以如下方式生成:

其中:I為總角動量,遵循Lie代數sl(2)對易關系;J(J+,J-,J3)為張量;a和b為任意參數.集合{I,J}形成關于sl(2)的Yangian代數,記為Ysl(2).Ysl(2)遵從如下獨立對易關系:


文獻[13-21]給出了Yangian代數的物理意義及應用,如運用Yangian代數分析可積模型的對稱性及利用Yangian算子作為升降算子實現系統本征態間的躍遷.本文利用Yangian算子,構造出新的算符,該算符可描述不同量子態間的躍遷,將其作用于系統簡并的本征態上,可實現能級劈裂,從而達到解除簡并態的目的.
在濃87Rb蒸汽實驗中,有少量成分形成Rb2,其外層電子形成自旋衰減形式(spin-dimmer),當外加恒磁場為特定值時,Zeeman效應產生的譜分裂消失.該Hamilton系統可表示為

式(2)當x=±1時出現簡并,H存在2K+1個對應同一個本征值的本征函數,即系統為2K+1重簡并[22-23].
將Hamilton量寫成一般形式:

其中:L1為軌道角動量;L2為自旋角動量.于是,可定義本征態為


其中 m=j1+1,j1-1,…,-j1,其簡并度為2j1+1.
當λ'=λ-時,波函數為

其中 m=j1,j1-1,…,-(j1+1),其簡并度為2j1+1.
引入由Yangian生成元組成的算符H1=J+J-和H2=J-J+.其中


時,整個體系的Hamilton量變為H=H0+H1和H=H0+H2.




2×式(8)-式(7)-式(9)可得

將m和j1的數值代入式(10),并由計算機軟件計算可得 u1,u2,R的解.當 j1=1,2,3時,u1,u2,R和u1-u2的值列于表1.



2×式(12)-式(11)-式(13)可得

當 j1=1,2,3 時,u1,u2,R 和 u1-u2的值列于表2.

表1 對 H1=J+J-,當 λ'=λ+時,u1,u2,R 和 u1-u2的值Table 1 Values of u1,u2,R,u1-u2with H1=J+J-and λ'=λ+





2×式(17)-式(16)-式(18)可得

當 j1=1,2,3 時,u1,u2,R'和 u1-u2的值列于表3.

表2 對 H1=J+J-,當 λ'=λ-時,u1,u2,R 和 u1-u2的值Table 2 Values of u1,u2,R,u1-u2with H1=J+J-and λ'=λ-

表3 對 H2=J-J+,當 λ'=λ+時,u1,u2,R'和 u1-u2的值Table 3 Values of u1,u2,R',u1-u2with H2=J-J+and λ'=λ+


2×式(21)-式(20)-式(22)可得

當 j1=1,2,3 時,u1,u2,R'和 u1-u2的值列于表4.

表4 對 H2=J-J+,當 λ'=λ-時,u1,u2,R'和 u1-u2的值Table 4 Values of u1,u2,R',u1-u2with H2=J-J+and λ'=λ-
綜上所述,本文以Rb金屬原子為模型,通過分析可知,H0=-gL1·L2+λL32的本征態為2j1+1重簡并.為使簡并的能級發生劈裂,引入了Yangian代數,由Yangian生成元構造了新算符H1=J+J-和H2=J-J+,使其作用于上述模型簡并的本征態上,為保證H0的本征態仍為H1和H2的本征態,可得u1,u2,R和R'的限制條件,從而達到消除簡并的目的.
[1]NIU Kai,XUE Kang,ZHAO Qing,et al.The Role of the l1-Norm in Quantum Information Theory and Two Types of the Yang-Baxter Equation[J].Journal of Physics A:Mathematical and Theoretical,2011,44(26):265304.
[2]HU Tao-tao,WU Chun-feng,XUE Kang.Berry Phase and Entanglement of 3 Qubits in a New Yang-Baxter System[J].Journal of Mathematical Physics,2009,50(8):083509.
[3]WANG Gang-cheng,XUE Kang,WU Chun-feng,et al.Entanglement and the Berry Phase in a New Yang-Baxter System[J].Journal of Physics A:Mathematical and Theoretical,2009,42(12):125207.
[4]HU Tao-tao,WANG Gang-cheng,SUN Chun-fang,et al.Method of Constructing Braid Group Representation and Entanglement in a 9×9 Yang-Baxter System[J].Reviews in Mathematical Physics,2009,21(9):1081-1091.
[5]SUN Chun-fang,HU Tao-tao,WANG Gang-cheng,et al.Thermal Entanglement in the Two-Qubit Systems Constructed from the Yang-Baxter R-Matrix[J].International Journal of Quantum Information,2009,7(5):879-889.
[6]Arnaudon D,Molev A,Ragoucy E.On the R-Matrix Realization of Yangians and Their Representations[J].Annales Henri Poincaré,2006,7(7):1269-1325.
[7]Inozemtsev V I,Inozemtseva N G,Sadovnikov B I.On the Integrals of Motion for an Exactly Solvable Model of Interacting Fermions[J].Moscow University Physics Bulletin,2008,63(2):83-86.
[8]TIAN Li-jun,ZHANG Hong-biao,JIN Shuo,et al.Y(sl(2))Algebra Application in Extended Hydrogen Atom and Monopolemodels[J].Commun Theor Phys,2004,41(5):641-644.
[9]SUN Chun-fang,XUE Kang,WANG Gang-cheng,et al.Entanglement and Yangian in a V3Yang-Baxter System[J].Quantum Inf Process,2012,11(2):385-395.
[10]Stukopin V A.The Quantum Double of the Yangian of the Lie Superalgebra A(m,n)and Computation of the Universal R-Matrix[J].Journal of Mathematical Sciences,2007,142(2):1989-2006.
[11]Stukopin V A.The Yangian Double of the Lie Superalgebra A(m,n)[J].Functional Analysis and Its Applications,2006,40(2):155-158.
[12]CAO Xue-xia,ZHANG Liang-yun.Quantization of Dimodule Algebras and Quantum Yang-Baxter Module Algebras[J].Journal of Mathematical Research and Exposition,2010,30(4):725-733.

[14]Stukopin V.Yangians of Classical Lie Superalgebras:Basic Constructions,Quantum Double and Universal R-Matrix[J].Proceedings of Institute of Mathematics of NAS of Ukraine,2004,50(3):1195-1201.
[15]TIAN Li-jun,QIN Li-guo,JIANG Ying,et al.Application of Y(sl(2))Algebra for Entanglement of Two-Qubit System[J].Commun Theor Phys,2010,53(6):1039-1042.
[16]Gerasimov A,Kharchev S,Lebedev D,et al.On a Class of Representations of the Yangian and Moduli Space of Monopoles[J].Communications in Mathematical Physics,2005,260(3):511-525.
[17]Lucy G,Alexander M.Representations of Twisted q-Yangians[J].Selecta Mathematica,2010,16(3):439-499.
[18]GOU Li-dan,ZHU Rui-han.A 9×9 Matrix Representation of Temperley-Lieb Algebra and Corresponding Entanglement[J].Chin Phys B,2012,21(2):020305.
[19]WANG Gang-cheng,XUE Kang,SUN Chun-fang,et al.Quantum Phase Transition Like Phenomenon in a Two-Qubit Yang-Baxter System[J].International Journal of Theoretical Physics,2010,49(10):2499-2505.
[20]GOU Li-dan,XUE Kang,WANG Gang-cheng.A 9×9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System[J].Communications in Theoretical Physics,2011,55(2):263-267.
[21]SUN Chun-fang,WANG Gang-cheng,HU Tao-tao,et al.The Representation of Temperley-Lieb Algebra and Entanglement in a Yang-Baxter System[J].International of Quantum Information,2009,7(6):1285-1293.
[22]BAI Cheng-ming,GE Mo-lin,XUE Kang.The Happer’s Puzzle Degeneracies and Yangian [J].Science in China:Series A,2002,32(4):320-329.(白承銘,葛墨林,薛康.Happer簡并之謎與Yangian代數[J].中國科學:A輯,2002,32(4):320-329.)
[23]BAI Cheng-ming,GE Mo-lin.Puzzle Degeneracies for87Rb2and Yangian Structures Appearing in Lower Excited States of Rare Gas Atoms[J].Nuclear Physics Review,2001,18(4):232-237.(白承銘,葛墨林.87Rb2的奇怪簡并與低激發惰性氣體表現的Yangian結構[J].原子核物理評論,2001,18(4):232-237.)