姜興武,王秀玉
(1.吉林工商學(xué)院基礎(chǔ)部,長(zhǎng)春130062;2.長(zhǎng)春工業(yè)大學(xué)基礎(chǔ)科學(xué)學(xué)院,長(zhǎng)春130012)
互補(bǔ)問(wèn)題與數(shù)學(xué)規(guī)劃、對(duì)策論、不動(dòng)點(diǎn)理論和極大極小問(wèn)題等密切相關(guān),在工程、力學(xué)、經(jīng)濟(jì)及交通等許多實(shí)際問(wèn)題中應(yīng)用廣泛.線性互補(bǔ)問(wèn)題是互補(bǔ)問(wèn)題的一個(gè)重要分支,即考慮問(wèn)題(LCP(M,q)):求x≥0,使得y=Mx+q≥0且xTy=0,其中M為一個(gè)n階方陣.
目前,求解互補(bǔ)問(wèn)題的方法很多,其中同倫方法由于具有大范圍收斂性而成為求解互補(bǔ)問(wèn)題的重要工具.本文通過(guò)構(gòu)造與文獻(xiàn)[1-7]不同的同倫方程,對(duì)P0線性互補(bǔ)問(wèn)題進(jìn)行求解,獲得了理想的結(jié)果.x≥0(x>0)表示向量x的每個(gè)分量為非負(fù)(正數(shù));w=(x,y)表示向量w=(xT,yT)T,xi表示向量x的第i個(gè)分量.

引理1[8]令M∈?n×n為任意矩陣,則下列情況等價(jià):
1)M∈?n×n是 P0矩陣;
2)M的所有主子式均為非負(fù)數(shù);
3)對(duì)于任意的正數(shù)ε>0,M+εE為P矩陣,其中E是n階單位矩陣.
引理2[8]M∈?n×n為P矩陣的充分必要條件是:M的全部主子式均為正值.
假設(shè)條件:
(H1)M∈?n×n是 P0矩陣;
(H2)互補(bǔ)問(wèn)題LCP(M,0)只有零解,即y=Mx,x≥0,y≥0,xTy=0只有零解.
記w=(x,y),任取 y(0)>0 及 x(0)=(M+E)-1(y(0)-q),w=(x(0),y(0)),構(gòu)造如下同倫方程H:?n×?n→?2n:

當(dāng)μ=1時(shí),式(1)為



證明:將y(0)視為變量,以w(0),w,μ為自變量的同倫方程記為Hw(0)(w,μ),它的Jacobian矩陣記為


證明:Γw(0)的存在性由定理1可得.若Γw(0)無(wú)界,則必存在子列{(x(k),y(k),μk)}∈Γw(0),使得當(dāng)k→∞時(shí),有‖(x(k),y(k),μk)‖→∞,由同倫方程(1)的第二個(gè)等式得

由式(2)及 μ∈(0,1]可知

將式(2)改寫(xiě)為

則由同倫方程(1)的第一個(gè)等式得


情形1)μ*∈[0,1).


可斷定μ*≠0,否則若μ*=0,則由式(7)得y(*)=Mx(*).而由式(4)可知,對(duì)任意的i=1,2,…,n,有

x(*)≥0,y(*)≥0,(x(*))Ty(*)=0,與假設(shè)條件(H2)矛盾.由引理1知,M+μ*E為P矩陣,式(7)與M+μ*E為P矩陣矛盾.
情形2)μ*=1.
① 若{(1-μk)x(k)}仍為無(wú)界序列,則式(5)兩邊同乘1-μk得


令


式(10)與M+E為P矩陣矛盾.




式(12)與{x(k)}的無(wú)界性矛盾.
將式(8)兩邊取極限得


式(14)與M+E是P矩陣矛盾.

證明:由定理1和定理2易知Γw(0)為有界曲線.由一維流形分類定理知,Γw(0)微分同胚于單位圓周或單位區(qū)間(0,1](證明與文獻(xiàn)[6]的定理2.1類似).由

是非奇異的知,Γw(0)不能微分同胚于單位圓周,只能微分同胚于單位區(qū)間.記(w(*),μ*)為Γw(0)的極限點(diǎn),則只可能發(fā)生下列3種情形:

綜上可見(jiàn),本文通過(guò)構(gòu)造新同倫方程,得到了P0線性互補(bǔ)問(wèn)題 LCP(M,q)有解與互補(bǔ)問(wèn)題LCP(M,0)只有零解的關(guān)系.
[1]Kojima M,Megiddo N,Mizuno M.A General Framework of Continuation Methods for Complementarity Problems[J].Math Oper Res,1993,18(4):945-963.
[2]YU Qian,HUANG Chong-chao,WANG Xian-jia.A Combined Homotopy Interior Point Method for the Linear Complementarity Problem[J].Applied Mathematics and Computation,2006,179(2):696-701.
[3]XU Qing,DANG Chuang-yin.A New Homotopy Method for Solving Non-linear Complementarity Problems[J].Optimization,2008,57(5):681-689.
[4]ZHAO Yun-bin,LI Gong-nong.Properties of a Homotopy Solution Path for Complementarity Problems with Quasimonotone Mappings[J].Applied Mathematics and Computation,2004,148(1):93-104.
[5]LI Gong-nong.Analysis for a Homotopy Path of Complementarity Problems Based on μ-Exceptional Family[J].Applied Mathematics and Computation,2005,169(1):657-670.
[6]DING Jun-di,YIN Hong-yan.A New Homotopy Method for Nonlinear Comolementarity Problems[J].Numericla Mathematics A Journal of Chinese Universities:English Series,2007,16(2):155-163.
[7]WANG Xiu-yu,JIANG Xing-wu,LIU Qing-huai.New Homotopy Method for Solving Nonlinear Complementarity Problems[J].Journal of Jilin University:Science Edition,2012,50(3):494-498.(王秀玉,姜興武,劉慶懷.求解互補(bǔ)問(wèn)題的新同倫算法[J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2012,50(3):494-498.)
[8]韓繼業(yè),修乃華,戚厚鐸.非線性互補(bǔ)理論與算法[M].上海:上海科學(xué)技術(shù)出版社,2006.