劉 丹
(沈陽飛機研究所粉體公司)
宋 揚
(沈陽遠大鋁業集團)
分級輪是渦流分級機的重要組成部分之一,對于物料的分散、分級都起著非常關鍵的作用。在設備分級的過程中,分級輪的周圍形成高速旋轉的氣-固兩相流。分級輪相當于一個圓筒狀的篩子,細顆粒通過旋轉的圓筒通道后,被收集成為細粉,粗顆粒則被甩出,成為粗粉。氣流的速度由分級輪的速度來控制,通過調節分級輪的速度可控制固體顆粒的離心力,達到控制粒度和分級精度的目的。
分級輪的形式多種多樣,通過調整葉片的數量、形狀、大小等參數可實現不同要求的分級操作。分級輪主要由底盤、環盤和均勻分布的分級輪葉片構成 (見圖1)。

圖1 分級輪
根據分級輪葉片角度的不同,可分為正角度葉片、徑向葉片和負角度葉片分級輪三種,如圖2所示。為了便于討論,需要建立氣體在這三種不同葉片角度分級輪中的流場模型,因此作如下假設:(1)所用氣體為理想氣體; (2)分級輪葉片的數量趨于無限多,厚度趨于無限薄; (3)在相同半徑附近的氣體密度相同。

圖2 分級輪的三種葉片形式
分級輪的葉片角度可設為-β、+β和0,本文主要分析氣體在負角度 (-β)葉片分級輪中的速度分布,并由此建立一個直角坐標系 (見圖3)。在分級輪的葉片間隙中取一個氣體微元,設該微元長度為d s,寬度為d h,厚度為b,密度為ρ,因此其質量 d m=ρd s·d h·b。

圖3 負角度葉片分級輪上的微元
隨著分級輪的轉動,半徑為Rc處的彎曲流道產生垂直于葉片流道的離心力 (V2/Rc)d m。同時,由于該分級輪的轉動,產生一個沿分級輪半徑方向的離心力rω2d m。該離心力的分力rω2cosβd m垂直作用于流動方向。當物體被引入一個旋轉的軌道,并沿著這條軌道以相對速度V運動時,就會產生哥氏力。這時就會有一個軌道壓力2ωV d m垂直作用于流動方向。所有這些力的合力會產生一個垂直于流動方向的壓力變化d p。從圖3可以看出力的大小和方向[1-2]。對于負角度葉片這些力為

式中 ω——分級輪角速度;
V——氣流在分級輪中的相對速度。
由于d p垂直于流動方向,因此d p/d h就是垂直于流動方向的壓力梯度。由式 (1)可以計算出d p/d h為

沿流動方向所受的力是由離心力的分量rω2d m sinβ和流動方向上的壓力組成的。依據牛頓定律可知,這兩個力作用在一起會對氣體微元產生一個加速度,即有下式:

將其代入式 (3)并整理,有

由圖3可知,sinβd s=d r,因此有

積分后得

式中u——微元的切向速度,u=rω;
K——常數。
在整個過程中可以忽略摩擦的影響,因此就不會出現切向力,也就是d H′/d h=0。將此式代入式 (7), 得

若以u=rω 和d h=d r/cosβ 代入式 (8), 則有

將式 (9)與式 (2)比較, 可得

式 (10)為相對流動的微分方程。同理也可對正角度葉片的分級輪進行分析,得到正角度葉片的公式為

當分級輪葉片為直葉片時,即Rc→∞,則有

設在分級輪中氣體流速的流場模型為 (包括三種葉片形式)

式中Vm——分級輪中氣流的平均流速;
h——分級輪葉片之間的間隙距離的一半;
Q——氣體流量;
L——分級輪的有效長度;
R——分級輪的外緣半徑。
由式 (12)可知,由于h值的不同,氣體在分級輪葉片間隙中的速度分布也不是很一致。
在上述的公式推導中,假設葉片的厚度趨于無限薄。但實際上葉片是有厚度的,葉片的厚度會使分級輪的流通面積減小,這樣就會使氣體的徑向速度V增大。考慮分級輪葉片的厚度后,分級輪中氣體的徑向流速可按下式進行修正:

式中z——分級輪的葉片數量;
δ——分級輪的葉片厚度。
分級輪在工作過程中,會產生強大的離心力,在這種離心力的作用下,粗顆粒會被拋向分級輪的外緣,而細顆粒卻隨著氣流進入到分級輪的中心,這樣就實現了設備的分級作用。
為了做進一步的研究,假定超細粉顆粒為圓球形,顆粒在氣流中的濃度非常小,這樣顆粒之間的干擾也會很少。根據力學的模型,流體介質中分散的單一顆粒的運動方程近似為[3-4]

式中a——加速度;
t——時間;
ρF——流體密度;
CW——阻力系數;
mT——顆粒質量;
AT——顆粒截面積;
VT——顆粒速度;
Re——雷諾數;
Vrel——顆粒對流體的相對速度。
若將隨機產生的各種影響忽略,并建立單個顆粒在切向和徑向的運動方程,有下式:

式中VTq——顆粒圓周速度;
VTr——顆粒徑向速度;
Req——周向流雷諾數;
Re r——徑向流雷諾數;
VLq——氣體圓周速度;
VLr——氣體徑向速度;
β——葉片角;
g——重力加速度。
若已知顆粒速度VT和氣體速度VL,就可以求得微分方程的數解。對于渦流分級機,可作以下假設:
(1)顆粒濃度很小,互相之間沒有干擾,同時顆粒速度與氣體速度相等;
(2)在分級輪外部的顆粒徑向加速度為零時,其所對應的顆粒粒徑為分級粒徑。根據以上假設,由式 (16)得

式中 ρr——顆粒密度;
n——分級輪轉速;
VLrA——分級輪外緣氣體的徑向速度;
μ——氣流動力黏度。
由于顆粒形狀對顆粒的粒徑也有一定的影響,因此將顆粒形狀系數φ引入。在設備運行中還會有其它因素的影響,因此引入系數K。于是,式 (17) 成為


式 (19)考慮了分級輪結構參數對分級粒徑的影響,并計及葉片數、葉片傾角對分級粒徑的影響,有利于進行分級輪的優化設計和尋找最佳工況點。
從上述分析可知,分級粒徑會在一定的范圍內變化,并不固定。將分級粒徑的上限設為Dmax,下限設為Dmin,這樣在分級輪分級之后,大于Dmax的顆粒幾乎都會在粗顆粒的產品中,小于Dmin的顆粒也基本會在細顆粒的產品中,而粒徑在Dmax~Dmin之間的顆粒將會在粗細顆粒的產品中。以直葉片為例:

通過對以上分級粒徑公式等的分析,可以推導出分級效果好的分級輪應具備下面幾種條件。
(1)分級輪葉片數量:由于分級輪葉片的數量是有限的,因此當分級輪轉動時,就會在其旋轉方向上形成渦流。為了減少渦流引起的不均勻流場現象,應減小葉片之間的距離,增加分級輪的葉片數量,從而使其形成的渦流強度減小。
(2)分級輪葉片角度:葉片安裝角度的不同,也會影響到分級粒徑、分級效率等參數。當分級輪直徑、長度等外形參數相同,而且運行參數也相同時,通常負角度葉片的分級銳度比徑向葉片和正角度葉片的要高。
(3)分級輪葉片厚度:一般情況下,分級作用是在分級輪外緣附近進行的,如果分級輪葉片厚度過大,分級輪葉片間的間隙就會減小,這樣就會導致流場不穩定,不利于物料的分散。因此,在滿足分級輪葉片強度及加工工藝要求的前提下,分級輪葉片的厚度應盡量薄。
由建立的分級粒徑公式分析可知,可以通過增加分級輪葉片的數目、減小分級輪葉片的厚度、減小分級輪的有效長度等方法,實現較細的分級粒度。
由粒徑公式分析可知,分級輪的分級粒度和分級精度與風量Q、轉速n具有如下關系:分級輪風量Q與分級粒徑成正比,當分級輪風量減小時,分級粒徑就會減小;分級輪轉速n與分級粒徑成反比,當分級輪轉速n增加時,分級粒徑也會減小。因此為了在運行中使分級輪的分級精度提高,應同時調節分級輪轉速和風量。
[1] 基里洛夫.葉輪機械原理 [M] .馬寶珊,張卓澄譯.北京:機械工業出版社,1972:178-191.
[2] 陳海焱.臥式分級機的研究 [J] .礦山機械,1996,24(12):42-44.
[3] 陳明紹.除塵技術的基本理論與應用 [M] .北京:中國建筑工業出版社,1980:99-102.
[4] 小川明.氣體中顆粒的分離 [M] .周世輝,劉雋人譯.北京:化學工業出版社,1991:83-115.