999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

三階m-點邊值問題的正解

2013-09-27 11:48:22張海娥
唐山學(xué)院學(xué)報 2013年3期

張海娥

(唐山學(xué)院 基礎(chǔ)教學(xué)部,河北 唐山063000)

考慮三階m-點邊值問題,

定理1 設(shè)E是Banach空間,KE是錐,Ω1和Ω2是E中有界開集,0∈Ω1,1Ω2,A:K∩(2\Ω1)→K全連續(xù),若A滿足:

(i)‖Au‖ ≤ ‖u‖,u∈K∩?Ω1,且 ‖Au‖≥‖u‖,u∈K∩?Ω2;

(ii)‖Au‖ ≥‖u‖,u∈K∩?Ω1,且‖Au‖≤‖u‖,u∈K∩?Ω2,

1 預(yù)備引理

引理1[5]對任意給定的y∈C[0,1],邊值問題

顯然,0≤G(t,s)≤G(1,s),t,s∈ [0,1]。

引理2 令0<θ<1,對任意的y∈C+[0,1],BVP(2)的解u(t)非負(fù)且滿足

證明 由G(t,s)≥0和y(t)≥0,易得u(t)≥0。令u(t0)= ‖u‖,t0∈ [θ,1],下面證明

由于0≤s≤ξ1時,(3)式顯然成立,故只需證明ξj-1≤s≤ξj,j=1,2,…,m-1的情況。

情形1:若0<t,t0≤s,則

情形2:若0<t≤s≤t0,則

情形3:若0<s≤t,t0,則

情形4:若0<t0≤s≤t,則

定義 K = {u∈E,u(t)≥0,t∈ [0,1]且≥δ‖u‖},易知K是E中的錐。對u∈K,定義算子T:K→K,Tu(t)=G(t,s)f(s,u(s))ds,t∈ [0,1]。由引理2可證得Tu(t)≥δ‖Tu‖。顯然,如果u是T 在K 中的不動點,則u是BVP(1)的解。

引理3 T:K→K是全連續(xù)的。

2 主要結(jié)論

為了方便起見,記:

定理2 當(dāng)f0=0,f∞=∞(超線性)或f0=∞,f∞=0(次線性)時,則BVP(1)至少存在一個正解。

證明 首先,我們考慮超線性的情形。

由f0=0,存在H1>0使得當(dāng)0<u≤H1時,f(t,u(t))≤M1u(t),其中 M1>0滿足

令Ω1={u∈E:‖u‖<H1},則對任意的u∈K∩Ω1,Au(t) ≤≤‖u‖,從而可得

又由f∞= ∞,存在 H2′>0,使得當(dāng)u≥ H2′ 時,f(t,u(t))≥ M2u(t),其中 M2>0滿足

令H2=max{2 H1,H2/δ},Ω2= {u∈E:‖u‖ <H2},對任意得u∈K∩?Ω2,≥δ‖u‖ ≥H2′,故由式(3),可知Au(t)=≥‖u‖,因此

由定理1的前半部分可得A有不動點u*∈K∩2\Ω1,亦為BVP(1)的正解。

其次,我們考慮次線性情形。

又由f0=∞,存在H1>0,使得當(dāng)0<u≤H1時,f(t,u(t))≥ M1′u(t),其中 M1′>0滿足

令Ω1={u∈E:‖u‖<H1},對任意的u∈K∩?Ω1故由式(8)可知Au(t)=,s)f(s,u(s))ds ≥ ∫δ10 G(t0,s)f(s,u(s))ds≥δ2M1′‖u‖≥ ‖u‖,因此

由f∞=0,存在H2′>0,使得當(dāng)u≥H2′時,f(t,u(t))≤M2′u(t),其中 M2′ >0滿足

分兩種情況考慮:

情況1:當(dāng)f有界時,即f(t,u(t))≤ N,u∈ [0,+∞),選取 H2= max {2 H1,NG(1,s)ds }。

令Ω2= {u∈E:‖u‖ <H2},則對任意的u∈K∩?Ω2,得

從而可得,‖Au‖ ≤ ‖u‖,u∈K∩?Ω2。 (11)

情況2:當(dāng)f無界時,選取 H2> max{2 H1,H2′},使得f(t,u(t))≤f(H2),0<u≤ H2。

對任意的u∈K∩?Ω2,由式(10)可得

由定理1的后半部分知A有不動點u**∈K∩2\Ω1,則BVP(1)至少有一個正解。

[1] Anderson D R,Davis J M.Multiple solutions and eigenvalues for three-order right focal boundary value problems[J].J.Math.Anal.Appl.,2002,267(1):135-157.

[2] Du Z J,Ge W G,Zhou M R.Singular perturbations for third-order nonlinear multi-point boundary value problem[J].J.Differential Equations,2005,218(1):69-90.

[3] Yao Q L.The existence and multiplicity of positive solutions for a third-order three-point boundary value problem[J].Acta Math.Appl.Sinica,2003,19(1):117-122.

[4] Zhang H E,Sun J P.A generalization of the Leggett-Williams fixed point theorem and its application[J].J.Appl.Math.Comput,2012,39(1-2):385-399.

[5] Sun J P,Zhang H E.Exsitence of solutions to third-order m-point boundary value problems[J].Electronic J.Differential Equations,2008,125:1-9.

主站蜘蛛池模板: 本亚洲精品网站| 久久国产拍爱| 亚洲国产高清精品线久久| 欧美精品v欧洲精品| 国产成人亚洲毛片| 伊人91视频| 国产精品亚洲五月天高清| 欧美中文字幕第一页线路一| 亚洲第一天堂无码专区| 久久久精品国产SM调教网站| 欧美福利在线| 欧美另类图片视频无弹跳第一页| 999精品色在线观看| 欧美一级爱操视频| 久久久久久尹人网香蕉| 久久精品国产一区二区小说| 亚洲国产天堂久久综合226114| 午夜丁香婷婷| 天天躁日日躁狠狠躁中文字幕| 日本国产在线| 久久久久亚洲av成人网人人软件| 谁有在线观看日韩亚洲最新视频| 国产一级在线观看www色| 啪啪啪亚洲无码| 精品丝袜美腿国产一区| 成人夜夜嗨| 狠狠色香婷婷久久亚洲精品| 国产成人免费手机在线观看视频 | 亚洲三级视频在线观看| 爽爽影院十八禁在线观看| 亚洲色图欧美| 国产xx在线观看| 国产永久免费视频m3u8| 网友自拍视频精品区| 亚洲欧美日韩另类在线一| 午夜无码一区二区三区| 欧美另类第一页| 亚洲日韩久久综合中文字幕| 欧美久久网| 日本在线视频免费| 久草国产在线观看| 黄色网页在线播放| V一区无码内射国产| 国产精品真实对白精彩久久 | 亚洲大学生视频在线播放| 四虎国产精品永久在线网址| 中文字幕免费播放| 性做久久久久久久免费看| 国产麻豆精品在线观看| 久久五月天综合| 国产日本一区二区三区| 激情六月丁香婷婷| 国产在线视频导航| 8090成人午夜精品| 日本午夜影院| 国产精品七七在线播放| 国产精品专区第1页| 免费一级大毛片a一观看不卡| 国内精品自在欧美一区| 成人永久免费A∨一级在线播放| 国产精品hd在线播放| 精品无码一区二区三区在线视频| 国产区免费| 老司机久久99久久精品播放| 精品撒尿视频一区二区三区| 91探花国产综合在线精品| 91九色视频网| 久久久成年黄色视频| 国产乱肥老妇精品视频| 激情综合婷婷丁香五月尤物| 国产又爽又黄无遮挡免费观看 | 伊人久久影视| 青青草国产在线视频| 亚洲综合一区国产精品| a欧美在线| 女高中生自慰污污网站| 久久99国产精品成人欧美| 91亚洲视频下载| 亚洲有码在线播放| 亚洲二区视频| 欧美一级一级做性视频| 欧美日韩成人在线观看|