方以群,張 懿
氧氣對(duì)于細(xì)胞的代謝和能量產(chǎn)生有著非常重要的作用,但過(guò)多的吸入氧氣也會(huì)給機(jī)體帶來(lái)毒性作用。新生兒長(zhǎng)期氧療可能出現(xiàn)視網(wǎng)膜病變,導(dǎo)致支氣管肺泡發(fā)育不良。潛水時(shí)長(zhǎng)時(shí)間吸入高分壓氧、應(yīng)用高壓氧治療減壓病時(shí),也會(huì)導(dǎo)致氧中毒的發(fā)生。氧氣的毒性作用在于體內(nèi)線粒體代謝氧氣的過(guò)程中所產(chǎn)生的活性氧族(reactive oxygen species,ROS)。ROS能夠損傷細(xì)胞中的小分子如DNA、RNA、蛋白質(zhì)和脂類等,通過(guò)調(diào)節(jié)轉(zhuǎn)錄因子和靶基因的激活導(dǎo)致細(xì)胞的凋亡或壞死。
肺是最早接觸氧氣的部位,因此是氧中毒的主要損傷靶器官之一。高氧能夠誘導(dǎo)肺內(nèi)的炎癥反應(yīng)、肺泡-毛細(xì)血管屏障破壞、氣體交換障礙和肺水腫[1]。
研究證實(shí),ROS的過(guò)度產(chǎn)生和大量炎癥細(xì)胞募集入肺是高氧誘導(dǎo)急性肺損傷的主要損傷機(jī)制[2]。
高氧條件下,ROS產(chǎn)生的主要部位是線粒體和煙酰胺腺嘌呤二核苷磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)氧化酶[3]。募集入肺的大量炎癥細(xì)胞所釋放的ROS是導(dǎo)致氧中毒肺損傷的主要來(lái)源,而炎癥細(xì)胞產(chǎn)生的ROS則完全來(lái)源于NADPH氧化酶系統(tǒng)。除了炎癥細(xì)胞通過(guò)NADPH氧化酶產(chǎn)生ROS,內(nèi)皮細(xì)胞也能利用自身的NADPH氧化酶系統(tǒng)產(chǎn)生ROS,誘導(dǎo)內(nèi)皮屏障的破壞[4]。
在促炎癥因子和趨化因子的作用下,大量的炎癥細(xì)胞募集入肺,除了破壞內(nèi)皮屏障,炎癥細(xì)胞還釋放大量的蛋白酶和可溶性物質(zhì)[5],進(jìn)一步加重肺內(nèi)的炎癥反應(yīng)和肺泡上皮細(xì)胞損傷,誘導(dǎo)多條信號(hào)轉(zhuǎn)導(dǎo)通路和多種轉(zhuǎn)錄因子的激活。
因而,減少ROS的產(chǎn)生,減輕肺內(nèi)的炎癥反應(yīng)以及調(diào)節(jié)信號(hào)轉(zhuǎn)導(dǎo)通路和轉(zhuǎn)錄因子的活性是氧中毒肺損傷中的重要治療靶點(diǎn)。
炎癥細(xì)胞通過(guò)NADPH氧化酶系統(tǒng)所產(chǎn)生的ROS是氧中毒肺損傷的主要來(lái)源。線粒體通透性轉(zhuǎn)運(yùn)孔組成蛋白環(huán)孢素受體D(可使細(xì)胞免受鈣超載和氧化應(yīng)激損傷)的缺失并不能減輕高氧所誘導(dǎo)的肺損傷[6],所以相對(duì)于線粒體途徑NADPH氧化酶系統(tǒng)的激活在氧中毒肺損傷中更為重要。但也有研究發(fā)現(xiàn),高氧誘導(dǎo)的肺內(nèi)皮細(xì)胞ROS的產(chǎn)生始于線粒體途徑的激活,隨后才有細(xì)胞內(nèi)鈣離子信號(hào)和Rac亞族Rac1轉(zhuǎn)位所激活的NADPH氧化酶的參與。線粒體復(fù)合物Ⅰ的抑制劑魚藤酮(rotenone)和細(xì)胞內(nèi)的鈣離子螯合劑能夠完全抑制高氧誘導(dǎo)的NADPH 氧化酶的激活[7]。
NADPH氧化酶的激活是一個(gè)非常復(fù)雜的過(guò)程,需要其細(xì)胞質(zhì)成分p47phox、p67phox和Rac1/2轉(zhuǎn)位到膜上,與膜上的Nox(NADPH oxidase,Nox)蛋白家族和p22phox正確裝配形成復(fù)合物[8]。除了NADPH氧化酶成分的正確裝配,肌動(dòng)蛋白細(xì)胞骨架的重排和脂質(zhì)筏結(jié)構(gòu)也參與NADPH氧化酶的激活。引起NADPH氧化酶激活的信號(hào)轉(zhuǎn)導(dǎo)途徑也是非常復(fù)雜的,至今尚未完全闡明。但通過(guò)不同環(huán)節(jié)抑制NADPH氧化酶的激活都能減輕ROS的產(chǎn)生,減輕高氧所誘導(dǎo)的肺損傷嚴(yán)重程度。由于內(nèi)皮細(xì)胞ROS的產(chǎn)生能夠介導(dǎo)內(nèi)皮屏障的破壞,所以抑制NADPH氧化酶的激活還能減輕高氧所誘導(dǎo)的肺通透性的增加,維持內(nèi)皮屏障。
研究證實(shí),高氧能夠誘導(dǎo)細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)和 p38絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)轉(zhuǎn)導(dǎo)途徑的激活,從而誘導(dǎo)內(nèi)皮細(xì)胞NADPH氧化酶的激活[9]。Src激酶能夠促使高氧條件下p47phox的磷酸化,從而激活NADPH氧化酶,Src的顯性失活或小干擾RNA(small interfering RNA,siRNA)則能夠減少高氧條件下內(nèi)皮細(xì)胞ROS的產(chǎn)生[10]。磷脂酶A2、磷脂酶C和磷脂酶D也都參與內(nèi)皮細(xì)胞NADPH氧化酶的激活[11]。肌動(dòng)蛋白細(xì)胞骨架的重排和其結(jié)合蛋白皮層蛋白(cortactin)的磷酸化使細(xì)胞質(zhì)中的p47phox轉(zhuǎn)位,從而誘導(dǎo)內(nèi)皮細(xì)胞NADPH氧化酶的激活和ROS的產(chǎn)生[12]。肌動(dòng)蛋白穩(wěn)定劑的預(yù)處理能夠減少內(nèi)皮細(xì)胞ROS的產(chǎn)生,肌動(dòng)蛋白解聚劑則使ROS產(chǎn)生的基礎(chǔ)量和高氧條件下ROS產(chǎn)生的誘導(dǎo)量明顯增多[13]。肌球蛋白三磷酸腺苷(adenosine triphosphate,ATP)酶是促使細(xì)胞骨架發(fā)生重排的動(dòng)力因素,肌球蛋白輕鏈激酶(myosin light chain kinase,MLCK)或 Rho蛋白激酶調(diào)節(jié)的肌球蛋白輕鏈的磷酸化能夠誘導(dǎo)NADPH氧化酶的激活和ROS的產(chǎn)生[14]。和MLCK激活的作用類似,內(nèi)皮細(xì)胞膜上的脂質(zhì)筏也是介導(dǎo)內(nèi)皮細(xì)胞產(chǎn)生ROS的一個(gè)支架結(jié)構(gòu),它通過(guò)募集NADPH氧化酶中的各種亞成分和細(xì)胞骨架蛋白誘導(dǎo)NADPH氧化酶的激活。IQ模體的RasGTP酶活化蛋白1(IQ motif containing GTPase activating protein 1,IQGAP1)能夠與Nox2相互作用調(diào)節(jié)ROS的產(chǎn)生[15],小窩蛋白1(caveolin-1,Cav1)表達(dá)量的下調(diào)或基因缺失也能部分減少內(nèi)皮細(xì)胞中ROS的產(chǎn)生[16]。
除了抑制線粒體途徑和NADPH氧化酶的激活,其他抗氧化劑的使用也能通過(guò)抑制環(huán)加氧酶、一氧化氮合酶、細(xì)胞色素P450系統(tǒng)和黃嘌呤氧化酶等ROS產(chǎn)生途徑減少高氧誘導(dǎo)的ROS過(guò)度產(chǎn)生,如N-硝基-L-精氨酸-甲基酯(N-Nitro-L-arginine methyl ester,L-NAME)、二聯(lián)苯碘(diphenyleneiodonium,DPI)和夾竹桃麻素(apocynin)等[17]。
除了ROS過(guò)度產(chǎn)生,大量炎癥細(xì)胞募集入肺所引起的肺內(nèi)炎癥反應(yīng)也是氧中毒肺損傷的一個(gè)重要特征,而且炎癥細(xì)胞浸潤(rùn)與肺損傷的嚴(yán)重程度密切相關(guān)[18]。
炎癥細(xì)胞浸潤(rùn)與其趨化能力有關(guān)。高氧使促炎癥因子和趨化因子的趨化作用大大增加,所以高氧使炎癥細(xì)胞的趨化能力大大提高。研究證明,白細(xì)胞介素-8(interleukin-8,IL-8)是氧中毒肺損傷中的一個(gè)重要的介導(dǎo)者[19]。IL-8需要CXC趨化因子受體-1(CXC chemokine receptor-1,CXCR-1)和 CXCR-2相互作用產(chǎn)生它的趨化作用[20]。高氧能夠誘導(dǎo)CXCR-2 的表達(dá)量上調(diào)[21]。通過(guò)基因缺失[22]或使用CXCR-2配體中和抗體的方法[23],抑制IL-8的趨化作用能夠明顯減少肺組織中的白細(xì)胞數(shù)量,減少肺泡上皮細(xì)胞的凋亡和改善肺損傷小鼠的生存率。
高遷移率族B1蛋白(high mobility group box-1 protein,HMGB1)是另一個(gè)可以作為干預(yù)靶點(diǎn)的促炎癥因子。HMGB1是在全身性炎癥反應(yīng)中發(fā)現(xiàn)的一個(gè)強(qiáng)有力的促炎癥因子,它可以作為信號(hào)分子誘導(dǎo)其他多種促炎癥因子的釋放,擴(kuò)大局部和全身的炎癥反應(yīng)[24]。高氧能誘導(dǎo)肺損傷小鼠支氣管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中HMGB1的累積和巨噬細(xì)胞中HMGB1的表達(dá),重組HMGB1能誘導(dǎo)巨噬細(xì)胞中腫瘤壞死因子-α(tumor necrosis factor-alpha,TNF-α)、巨噬細(xì)胞炎癥蛋白-2(macrophage-derived inflammatory mediator-2,MIP-2)的釋放[25]。
白細(xì)胞從血管內(nèi)進(jìn)入肺泡腔需跨越內(nèi)皮細(xì)胞和上皮細(xì)胞屏障,黏附分子對(duì)于白細(xì)胞與內(nèi)皮細(xì)胞或上皮細(xì)胞間的相互作用非常重要。CD11b/CD18、CD44、胞間黏附分子(intercellular adhesion molecule-1、ICAM-1)、血管細(xì)胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)、血小板內(nèi)皮細(xì)胞黏附分子-1(platelet endothelial cell adhesion molecule-1,PECAM-1)和跨膜連接黏附分子(junctional adhesion molecules,JAMs)在高氧和其他誘因?qū)е碌募毙苑螕p傷(acutelunginjury,ALI)中都不同程度地在不同時(shí)段介導(dǎo)了白細(xì)胞在內(nèi)皮細(xì)胞和上皮細(xì)胞中的黏附和遷移[26],但單一阻斷某一黏附分子的表達(dá)對(duì)于減輕氧中毒肺損傷的炎癥反應(yīng)并不十分理想。
炎癥細(xì)胞募集入肺的過(guò)程中還釋放大量的蛋白酶和可溶性物質(zhì)。臨床證據(jù)顯示,ALI患者的BALF和血漿里都能檢測(cè)到中性粒細(xì)胞的彈性蛋白酶和基質(zhì)金屬蛋白酶(matrixmetalloproteinases,MMPs),而且其量的多少與肺損傷的嚴(yán)重程度密切相關(guān)[27]。動(dòng)物實(shí)驗(yàn)證實(shí),氣管內(nèi)給予彈性蛋白酶能夠誘導(dǎo)ALI[28],抑制彈性蛋白酶則對(duì)高氧誘導(dǎo)的肺損傷動(dòng)物具有保護(hù)作用[29]。高氧吸入后,募集入肺的白細(xì)胞大量表達(dá)MMP9和MMP12,MMP9基因缺失明顯增加肺損傷小鼠的生存率[30]。中性粒細(xì)胞釋放的血管內(nèi)皮生長(zhǎng)因子(vascularendothelialgrowthfactor,VEGF)、組胺和凝血酶,則通過(guò)激活不同的信號(hào)轉(zhuǎn)導(dǎo)通路誘導(dǎo)內(nèi)皮細(xì)胞通透性的增加[31]。
高氧誘導(dǎo)的細(xì)胞外基質(zhì)(extracellular matrix,ECM)的降解也參與肺內(nèi)的炎癥反應(yīng)。ECM中大分子的透明質(zhì)酸(haluronic acid,HA)一旦降解為小分子片斷即成為信號(hào)分子介導(dǎo)炎癥反應(yīng)和誘導(dǎo)肺細(xì)胞的凋亡[32]。抑制HA的降解或是給予大分子HA干預(yù)能夠減輕炎癥反應(yīng),減少肺泡上皮細(xì)胞的凋亡[33]。由于損傷局部的小分子HA片斷的清除依賴于細(xì)胞表面CD44的存在和其下游Toll樣受體4(Toll-like receptor 4,TLR4)所介導(dǎo)的信號(hào)通路,所以CD44和TLR4對(duì)于HA介導(dǎo)的炎癥反應(yīng)具有調(diào)節(jié)作用[34]。CD44基因缺失加重高氧誘導(dǎo)的肺損傷[35]。TLR3/4基因缺失使BALF中的白細(xì)胞和促炎癥因子明顯增多,降低高氧誘導(dǎo)的肺損傷動(dòng)物的生存率[36]。
肺泡Ⅰ型和Ⅱ型上皮細(xì)胞連接于同一基底膜上,構(gòu)成肺泡上皮屏障,維持正常的肺功能。ROS和炎癥反應(yīng)能夠直接引起肺泡上皮細(xì)胞的損傷。除了凋亡和壞死,高氧還能誘導(dǎo)肺泡上皮細(xì)胞的另外一種死亡方式,即所謂的腫瘤病(oncosis)[37]。但無(wú)論是凋亡還是非凋亡性的肺泡上皮細(xì)胞的死亡都會(huì)引起一系列調(diào)節(jié)細(xì)胞凋亡的信號(hào)轉(zhuǎn)導(dǎo)通路的激活。利用抑制劑或是基因敲除的方法,MAPK家族成員包括ERK1/2、Jun氨酸末端激酶(Jun amino-terminal kinase,JNK)1/2和p38MAPK被證明在高氧誘導(dǎo)的肺泡上皮細(xì)胞損傷中發(fā)揮著調(diào)節(jié)細(xì)胞凋亡和炎癥反應(yīng)的重要作用。
ERK途徑的激活能夠減輕高氧誘導(dǎo)的肺泡Ⅱ型上皮細(xì)胞的凋亡,其選擇性抑制劑PD-98059的應(yīng)用則取消了這種保護(hù)作用[38]。線粒體乙醛脫氫酶(mitochondrial aldehyde dehydrogenase,mtALDH)和具有抗炎性質(zhì)的肌苷也是通過(guò)ERK途徑的激活或者是代償性Akt途徑的激活減輕高氧誘導(dǎo)的肺泡上皮細(xì)胞的凋亡[39]。但也有實(shí)驗(yàn)證實(shí),ERK1/2的激活增加了小鼠肺泡上皮細(xì)胞-12(murine lung epithelial cell-12,MLE-12)對(duì)于高氧誘導(dǎo)的細(xì)胞凋亡的敏感性,PD-98059的處理則明顯減少了高氧小鼠肺組織中Caspase-3的激活和原位末端轉(zhuǎn)移酶標(biāo)記(terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling,TUNEL)陽(yáng)性細(xì)胞數(shù)[3]。類似的結(jié)果也曾出現(xiàn)于高氧誘導(dǎo)的巨噬細(xì)胞損傷中[40]。所以,在高氧誘導(dǎo)的肺損傷中,ERK1/2促進(jìn)或抑制凋亡的作用可能是依賴于細(xì)胞類型和培養(yǎng)條件的。與ERK1/2不同,JNK和p38MAPK則能夠促進(jìn)高氧誘導(dǎo)的多種肺泡上皮細(xì)胞株的凋亡,因而在高氧誘導(dǎo)的肺泡上皮細(xì)胞損傷中被認(rèn)為是凋亡或非凋亡性細(xì)胞死亡的促進(jìn)因素[41]。
盡管激活MAPKs信號(hào)通路的上游基因目前不是很清楚,但多種基因和轉(zhuǎn)錄因子已被證明在高氧誘導(dǎo)的肺損傷中被MAPKs途徑激活并作為其下游的效應(yīng)分子,其中包括促進(jìn)細(xì)胞凋亡的 Bax/Bid、Caspases、p53和抑制細(xì)胞凋亡的B細(xì)胞淋巴瘤因子-2(B cell lymphoma-2,BCL-2)、血紅素氧合酶-1(heme oxygenase-1)、熱休克蛋白(heat shock proteins,HSPs)、Akt、抗氧化反應(yīng)元件(antioxident response element,ARE)、TLR4 以及 IL-6、IL-11、IL-8、IL-11β、TNF-α、VEGF、胰島素樣生長(zhǎng)因子(insulin-like growth factor,IGF)、角質(zhì)細(xì)胞生長(zhǎng)因子(Keratinocyte growth factor,KGF)等多種細(xì)胞因子和促炎癥因子[42]。
高氧還能誘導(dǎo)多種核轉(zhuǎn)錄因子的激活,被認(rèn)為發(fā)揮重要介導(dǎo)作用的有核因子-κB(nuclear factorkappa B,NF-κB)、激活蛋白-1(activating protein-1,AP-1)、核因子 E2調(diào)節(jié)因子2(nuclear factor erythroid 2-related factor 2,NRF2)及信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活子(signal transducer and activator of transcription,STAT)。
高氧誘導(dǎo)的NF-κB的激活及其作用具有細(xì)胞種類特異性和損傷特異性。高氧能夠誘導(dǎo)非小細(xì)胞肺癌耐藥細(xì)胞株A549細(xì)胞NF-κB的激活,但對(duì)于細(xì)胞凋亡并沒(méi)有保護(hù)作用[43]。NF-κB的激活增強(qiáng)高氧誘導(dǎo)的肺損傷小鼠中肺細(xì)胞的凋亡,其活性抑制則抵消這種對(duì)于凋亡的促進(jìn)作用[44]。與此相反,抑制高氧誘導(dǎo)的NF-κB的激活增加了肺上皮細(xì)胞的非凋亡性死亡,并且減少了具有細(xì)胞保護(hù)作用的錳超氧化物歧化酶(manganese superoxide dismutase,MnSOD)的表達(dá)[45]。高氧預(yù)處理的非小細(xì)胞肺癌耐藥細(xì)胞株A549細(xì)胞由于NF-κB的激活減少了過(guò)氧化氫(hydrogenperoxide,H2O2)誘導(dǎo)的細(xì)胞凋亡,抑制NF-κB的激活則保護(hù)作用消失[46]。實(shí)驗(yàn)證實(shí),高氧誘導(dǎo)的NF-κB的激活及其作用還受發(fā)育的影響。高氧能夠誘導(dǎo)新生鼠而不是成年鼠肺組織中NF-κB的激活,與成年鼠相比,新生鼠對(duì)于高氧具有較強(qiáng)的耐受力,抑制新生鼠肺組織中NF-κB的激活則其肺損傷程度與成年鼠相比差別無(wú)統(tǒng)計(jì)學(xué)意義[44]。然而臨床證據(jù)顯示,NF-κB活性增強(qiáng)與早產(chǎn)兒呼吸窘迫綜合征有關(guān),能夠增加支氣管肺泡發(fā)育不良的風(fēng)險(xiǎn)[47]。
和NF-κB類似,高氧誘導(dǎo)的 AP-1激活也受到發(fā)育的影響,并具有組織特異性[48]。阻斷AP-1的激活能夠增加高氧誘導(dǎo)的大鼠肺泡上皮細(xì)胞的凋亡[41,49]。在高氧誘導(dǎo)的非小細(xì)胞肺癌耐藥細(xì)胞株A549細(xì)胞損傷中,JNK/AP-1途徑激活的一個(gè)特異性的下游靶基因就是IL-8啟動(dòng)子,AP-1的激活通過(guò)IL-8誘導(dǎo)肺內(nèi)的炎癥反應(yīng)[50]。
NRF2在正常情況下被阻遏蛋白Kelch樣ECH相關(guān)蛋白1(Kelch-like ECH-associated protein 1,KEAP1)固定于細(xì)胞質(zhì),在外源物或氧化劑的作用于與KEAP1解離,轉(zhuǎn)位入核,通過(guò)ARE誘導(dǎo)一系列具有解毒作用的酶類的表達(dá),如谷胱甘肽S轉(zhuǎn)移酶(glutathione S transferases,GSTs)和NADPH氧化酶、笨醌氧化還原酶等[51]。高氧能夠誘導(dǎo)肺的NRF2基因激活[52]。NRF2基因缺失小鼠的肺損傷加重,不能上調(diào)ARE介導(dǎo)的抗氧化酶的表達(dá),與野生型小鼠相比,存在一系列基因表達(dá)上的紊亂[53]。
STAT基因缺失明顯加重高氧誘導(dǎo)的肺損傷,使包括IL-6在內(nèi)的促炎癥因子的表達(dá)明顯增加[54]。STAT基因組成性的過(guò)表達(dá)則能通過(guò)抑制中性粒細(xì)胞釋放的MMP9和MMP12在氧中毒肺損傷中發(fā)揮保護(hù)作用[30]。
ROS的過(guò)度產(chǎn)生和大量炎癥細(xì)胞募集入肺是高氧誘導(dǎo)肺損傷的主要原因。ROS和肺內(nèi)炎癥反應(yīng)誘導(dǎo)眾多復(fù)雜而相互疊加的信號(hào)轉(zhuǎn)導(dǎo)通路的激活和下游靶基因及轉(zhuǎn)錄因子的表達(dá)變化,導(dǎo)致肺泡上皮細(xì)胞的損傷和肺內(nèi)通透性的增加。高氧誘導(dǎo)的肺損傷是一個(gè)非常復(fù)雜的綜合征,至今尚未有確切而有效的治療方法。減少ROS的過(guò)度產(chǎn)生,減少炎癥細(xì)胞的募集入肺,調(diào)節(jié)MAPKs、NF-κB等信號(hào)轉(zhuǎn)導(dǎo)通路和轉(zhuǎn)錄因子的活性是氧中毒肺損傷中的重要干預(yù)靶點(diǎn),但尚需要更加深入的研究。在復(fù)雜的病理生理機(jī)制和相互疊加的信號(hào)轉(zhuǎn)導(dǎo)通路中尋找共同點(diǎn)是進(jìn)一步研究的一個(gè)方向,以達(dá)到單一阻斷但獲取多方面保護(hù)作用的潛在效應(yīng)。
[1]Slutsky AS.Lung injury caused by mechanical ventilation[J].Chest,1999,116(1 Suppl):9S-15S.
[2]Asikainen TM,White CW.Pulmonary antioxidant defenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution:implications for antioxidant therapy[J].Antioxid Redox Signal,2004,6(1):155-167.
[3]Zhang X,Shan P,Sasidhar M,et al.Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogenactivated protein kinase mediate hyperoxia-induced cell death in lung epithelium[J].Am J Respir Cell Mol Biol,2003,28(3):305-315.
[4]Tauseef M,Knezevic N,Chava KR,et al.TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxininduced lung vascular permeability and inflammation[J].J Exp Med,2012,209(11):1953-1968.
[5]Xiao W,Peng Y,Liu Y,et al.HSCARG inhibits NADPH oxidase activity through regulation of the expression of p47phox[J].PLoS One,2013,8(3):e59301.
[6]Budinger GR,Mutlu GM,Urich D,et al.Epithelial cell death is an important contributor to oxidant-mediated acute lung injury[J].Am J Respir Crit Care Med,2011,183(8):1043-1054.
[7]Brueckl C,Kaestle S,Kerem A,et al.Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ[J].Am J Respir Cell Mol Biol,2006,34(4):453-463.
[8]Touyz RM.Apocynin,NADPH Oxidase,and vascular cells:a complex matter[J].Hypertension,2008,51(2):172-174.
[9]Parinandi NL,Kleinberg MA,Usatyuk PV,et al.Hyperoxiainduced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells[J].Am J Physiol Lung Cell Mol Physiol,2003,284(1):L26-L38.
[10]Chowdhury AK,Watkins T,Parinandi NL,et al.Src-mediated tyrosine phosphorylation of p47phox in hyperoxiainduced activation of NADPH oxidase and generation of reactive oxygen species in lung endothelial cells[J].J Biol Chem,2005,280(21):20700-20711.
[11]Frey RS,Gao X,Javaid K,et al.Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidasemediated oxidant generation and NF-kappaB activation in endothelial cells[J].J Biol Chem,2006,281(23):16128-16138.
[12]May RC,Machesky LM.Phagocytosis and the actin cytoskeleton[J].J Cell Sci,2001,114(6):1061-1077.
[13]Usatyuk PV,Romer LH,He D,et al.Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin[J].J Biol Chem,2007,282(32):23284-23295.
[14]Dudek SM,Birukov KG,Zhan X,et al.Novel interaction of cortactin with endothelial cell myosin light chain kinase[J].Biochem Biophys Res Commun,2002,298(4):511-519.
[15]Ikeda S,Yamaoka-Tojo M,Hilenski L,et al.IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2[J].Arterioscler Thromb Vasc Biol,2005,25(11):2295-2300.
[16]Bauer PM,Yu J,Chen Y,et al.Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis[J].Proc Natl Acad Sci U S A,2005,102(1):204-209.
[17]Touyz RM.Apocynin,NADPH Oxidase,and Vascular Cells A Complex Matter[J].Hypertension,2008,51(2):172-174.
[18]Auten RL,Whorton MH,Nicholas Mason S.Blocking neutrophil influx reduces DNA damage in hyperoxiaexposed newborn rat lung[J].Am J Respir Cell Mol Biol,2002,26(4):391-397.
[19]Goodman RB,Pugin J,Lee JS,et al.Cytokine-mediated inflammation in acute lung injury[J].Cytokine Growth Factor Rev,2003,14(6):523-535.
[20]Govindaraju V,Michoud MC,Al-Chalabi M,et al.Interleukin-8:novel roles in human airway smooth muscle cell contraction and migration[J].Am J Physiol Cell Physiol,2006,291(5):C957-C965.
[21]Yi M,Jankov RP,Belcastro R,et al.Opposing effects of 60%oxygen and neutrophil influx on alveologenesis in the neonatal rat[J].Am J Respir Crit Care Med,2004,170(11):1188-1196.
[22]Sue RD,Belperio JA,Burdick MD,et al.CXCR2 is critical to hyperoxia-induced lung injury[J].J Immunol,2004,172(6):3860-3868.
[23]Auten RL,Richardson RM,White JR,et al.Nonpeptide CXCR2 antagonist prevents neutrophil accumulation in hyperoxia-exposed newborn rats[J].J Pharmacol Exp Ther,2001,299(1):90-95.
[24]Park JS,Arcaroli J,Yum HK,et al.Activation of gene expression in human neutrophils by high mobility group box 1 protein[J].Am J Physiol Cell Physiol,2003,284(4):C870-C879.
[25]Patel VS,Sitapara RA,Gore A,et al.High Mobility Group Box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice[J].Am J Respir Cell Mol Biol,2013,48(3):280-287.
[26]Entezari M,Weiss DJ,Sitapara R,et al.Inhibition of highmobility group box 1 protein(HMGB1)enhances bacterial clearance and protects against Pseudomonas Aeruginosa pneumonia in cystic fibrosis[J].Mol Med,2012,18(1):477-485.
[27]Fligiel SE,Standiford T,F(xiàn)ligiel HM,et al.Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury[J].Hum Pathol,2006,37(4):422-430.
[28]Tremblay GM,Vachon E,Larouche C,et al.Inhibition of human neutrophil elastase-induced acute lung injury in hamsters by recombinant human pre-elafin(trappin-2)[J].Chest,2002,121(2):582-588.
[29]Yamamoto H,Koizumi T,Kaneki T,et al.Effects of lecithinized superoxide dismutase and a neutrophil elastase inhibitor(ONO-5046)on hyperoxic lung injury in rat[J].Euro J Pharmacol,2000,409(2):179-183.
[30]Lian X,Qin Y,Hossain SA,et al.Overexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury[J].J Immunol,2005,174(11):7250-7256.
[31]Kumar P,Shen Q,Pivetti CD,et al.Molecular mechanisms of endothelial hyperpermeability:implications in inflammation[J].Expert Rev Mol Med,2009,11:e19.
[32]Mascarenhas MM,Day RM,Ochoa CD,et al.Low molecular weight hyaluronan from stretched lung enhances interletkin-8 expression[J].Am J Respir Cell Mol Biol,2004,30(1):51-60.
[33]Jiang D,Liang J,F(xiàn)an J,et al.Regulation of lung injury and repair by Toll-like receptors and hyaluronan[J].Nat Med,2005,11(11):1173-1179.
[34]Jiang D,Liang J,Li Y,et al.The role of Toll-like receptors in non-infectious lung injury[J].Cell Res,2006,16(8):693-701.
[35]van der Windt GJ,Schouten M,Zeerleder S,et al.CD44 is protective during hyperoxia-induced lung injury[J].Am J Respir Cell Mol Biol,2011,44(3):377-383.
[36]Murray LA,Knight DA,McAlonan L,et al.Deleterious role of TLR3 during hyperoxia-induced acute lung injury[J].Am J Respir Crit Care Med,2008,178(12):1227-1237.
[37]Tang PS,Mura M,Seth R,et al.Acute lung injury and cell death:how many ways can cells die?[J].Am J Physiol Lung Cell Mol Physiol,2008,294(4):L632-L641.
[38]Buckley S,Driscoll B,Barsky L,et al.ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2[J].Am J Physiol,1999,277(1):L159-L166.
[39]Xu D,Guthrie JR,Mabry S,et al.Mitochondrial aldehyde dehydrogenase attenuates hyperoxia-induced cell death through activation of ERK/MAPK and PI3K-Akt pathways in lung epithelial cells[J].Am J Physiol Lung Cell Mol Physiol,2006,291(5):L966-L975.
[40]Petrache I,Choi ME,Otterbein LE,et al.Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells[J].Am J Physiol,1999,277(3):L589-L595.
[41]Li Y,Arita Y,Koo HC,et al.Inhibition of c-Jun N-terminal kinase pathway improves cell viability in response to oxidant injury[J].Am J Respir Cell Mol Biol,2003,29(6):779-783.
[42]Lee PJ,Choi AM.Pathways of cell signaling in hyperoxia[J].Free Radic Biol Med,2003,35(4):341-350.
[43]Li Y,Zhang W,Mantell LL.Nuclear factor-kappaB is activated by hyperoxia but does not protect from cell death[J].J Biol Chem,1997,272(33):20646-20649.
[44]Yang G,Abate A,George AG,et al.Maturational differences in lung NF-κB activation and their role in tolerance to hyperoxia[J].J Clin Invest,2004,114(5):669-678.
[45]Franek WR,Morrow DM,Zhu H,et al.NF-κB protects lung epithelium against hyperoxia-induced nonapoptotic cell death-oncosis[J].Free Radic Biol Med,2004,37(10):1670-1679.
[46]Franek WR,Horowitz S,Stansberry L,et al.Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells[J].J Biol Chem,2001,276(1):569-575.
[47]Bourbia A,Cruz MA,Rozycki HJ.NF-κB in tracheal lavage fluid from intubated premature infants:association with inflammation,oxygen,and outcome[J].Arch Dis Child Fetal Neonatal Ed,2006,91(1):F36-F39.
[48]Tong L,Toliver-Kinsky T,Rassin D,et al.Hyperoxia increases AP-1 DNA binding in rat brain[J].Neurochem Res,2003,28(1):111-115.
[49]Romashko J 3rd,Horowitz S,F(xiàn)ranek WR,et al.MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells[J].Free Radic Biol Med,2003,35(8):978-993.
[50]Joseph A,Li Y,Koo HC,et al.Superoxide dismutase attenuates hyperoxia-induced interleukin-8 induction via AP-1[J].Free Radic Biol Med,2008,45(8):1143-1149.
[51]Jaiswal AK.Regulation of genes encoding NAD(P)H:quinone oxidoreductases[J].Free Radic Biol Med,2000,29(3/4):254-262.
[52]Cho HY,Jedlicka AE,Reddy SP,et al.Linkage analysis of susceptibility to hyperoxia:Nrf2 is a candidate gene[J].Am J Respir Cell Mol Biol,2002,26(1):42-51.
[53]Cho HY,Jedlicka AE,Reddy SP,et al.Role of NRF2 in protection against hyperoxic lung injury in mice[J].Am J Respir Cell Mol Biol,2002,26(2):175-182.
[54]Hokuto I,Ikegami M,Yoshida M,et al.Stat-3 is required for pulmonary homeostasis during hyperoxia[J].J Clin Invest, 2004,113(1):28-37.