李俊



【摘要】徐州某空間結構跨度大,結構體系復雜,鋼柱長度,給其抗震性能設計帶來困難。本文建立上部鋼結構單獨模型和鋼結構——混凝土裙房整體模型進行分析對比,研究地震作用下混凝土裙房對于上部鋼結構動力響應的影響。根據該結構體系特點,結合國內外設計規范確定該結構的抗震性能目標,為該結構設計與分析提供理論依據和數據支持。本文結論可為復雜空間結構的抗震設計和地震響應分析提供參考。
【關鍵詞】大跨空間結構;下部結構影響;層間位移角;抗震性能設計;彈塑性時程分析
1. 結構概況
(1)徐州某綜合體屋蓋建筑坐落于徐州市中央商務區,鋼結構屋蓋的平面形狀為對稱梭形,長軸106m,短軸53m,屋蓋檐口高出裙房屋頂8.7m,結構體系如圖1所示。天空廣場屋蓋的豎向荷載通過內部兩根巨型鋼管混凝土立柱和周邊框架柱傳至其下部裙房結構,天空廣場鋼結構的抗側和抗扭剛度,由支撐和頂環梁與鋼柱形成的支撐框架結構提供。該結構體系復雜主要體現為:鋼柱長短不一,剛度中心和質量中心不重合;鋼結構支承于下部混凝土裙房之上。
圖1天空廣場結構體系組成
(2)目前,考慮下部支承結構影響的分析方法主要包括整體建模分析方法和簡化分析方法。簡化分析方法僅對上部模型進行單獨分析,根據剛度等效、阻尼等效和質量等效的原則,對分析結果進行修正,以減少分析過程的計算量[1~5]。這些簡化方法尚不能考慮下部支承剛度對上部結構地震響應的影響,且計算精度較低。本文通過整體建模與簡化模型分析比較,研究下部裙房結構對上部鋼結構地震反應影響的程度,并對比國內外規范性能化抗震設計的要求,制定該結構具體的性能化設計目標。
2. 性能目標
2.1性能目標的選擇。
(1)性能化設計是當今抗震設計的發展趨勢,世界各國設計規范設防水準和性能目標的確定準則不盡相同。我國現行《建筑工程抗震設防分類標準》GB50023[6]和《建筑工程抗震形態設計通則》CECS160[7]采用三等級設防水準, ASCE41[8]則采用四等級設防水準,GB50023與CECS160對應的設防水準定義基本相同。本文按照GB50023和CECS160的水準一確定多遇地震水平,按照水準三確定設防地震水平,按照GB50023和ASCE41的水準四確定罕遇地震水平。
(2)CECS160[7]的性能目標選擇按重要性分四級,ASCE41則分為三級。本工程應歸為CECS160中的II類建筑或ASCE41中的震災關鍵建筑。GB50011、CECS160和ASCE41中相應的性能目標比較見表1。
(3)國內外主要抗震設計規范均未特別給出大跨度空間結構設計的具體控制指標,本文根據鋼結構類構件定義其控制指標(表2)。
2.2結構變形及構件承載能力限值。
目前,多高層結構變形設計的控制指標主要為層間位移角,對于復雜大跨度空間結構,層間位移角的定義沒有意義。但對于天空廣場鋼結構設計,為控制P-Δ效應,可參照多高層結構設計按框架整體側移確定層間位移角,以防止結構變形過大導致玻璃幕墻等非結構構件破損或墜落,該結構的層間位移角應考慮鋼柱長度不同和扭轉變形兩種因素。由于天空廣場鋼結構和下部混凝土裙房的剛度相差較大,可以認為不同長度的鋼立柱其柱頂和柱腳的位移差是一定的,因此,高度較小的鋼柱會產生較大的層間位移角(圖2a)。對于扭轉效應明顯的橢圓形屋蓋,角部變形將超過中部變形(圖2b),鑒于此,本結構的層間位移角可偏于安全地定義為較短角柱的柱頂柱腳位移差與該柱柱高之比。在確定構件承載能力抗震性能目標時,將結構構件分為主要構件和耗能構件兩類。主要構件包括巨柱、主次桁架、外圍立柱和環梁,耗能構件包括支撐和環梁。本結構性能目標的控制指標見表3。
圖2結構變形模式與層間位移角定義
3. 結構計算模型
(1)結構整體計算模型柱腳采用剛接約束,天空廣場單獨計算模型落地長柱采用剛接約束,其他均采用鉸接約束模擬。鋼結構和鋼筋混凝土結構框架采用梁單元,鋼筋混凝土板采用殼單元。鋼材采用Q345B,混凝土為C35~C55,材料本構關系采用抗震設計規范推薦的多線性隨動強化模型。計算多遇地震響應時,單獨模型阻尼比鋼結構取0.03,整體模型取0.035;計算罕遇地震響應時,兩種模型均取0.05(鋼材本構關系見圖3、混凝土本構關系見圖4)。
(2)時程分析時采用的多遇地震波峰值加速度為35cm/s2,罕遇地震波峰值加速度為220cm/s2,分別將X方向和Y方向作為主輸入方向,主方向、次方向和豎向的地震波峰值比為1:0.85:0.65. 多遇地震波時程曲線見圖5和圖6。
4. 結構自振特性
(1)本結構整體屬于剪切型結構,上部屋蓋鋼結構屬于軸力型結構,整體結構和上部鋼結構的振型均比較復雜,高階振型效應可能較大。計算需保證兩個結構模型各個方向的質量參與系數累積量均超過90%,篇幅所限僅將部分自振周期及質量參與系數值列于表4(單獨模型前三階振型見圖7,整體模型前三階振型見圖8)。
圖7單獨模型前三階振型
(2)結構單獨模型的自振模態表明,豎向振動和扭轉在前幾階振型中就開始顯露,且存在平扭耦聯現象,高階振型貢獻很大;而結構整體模型的自振模態中,前幾階振型以平扭耦聯振動為主,豎向振動在70階振型以后才出現。
(3)比較兩種計算模型的計算結果可看出,鋼結構單獨模型和鋼結構混凝土整體模型的自振特性差異很大,且兩者之間并無明顯關聯。對于結構整體模型而言,其前幾階振型更多地表現為混凝土裙房的自振特性,這表明下部混凝土裙房對于上部鋼結構振動特性影響不可忽略。
5. 地震作用響應分析
5.1分析方法。
本文采用彈性時程分析得到結構在多遇地震和設防烈度地震下的動力響應,采用彈塑性時程分析法得到罕遇地震下的動力響應。彈性時程分析時選擇CQC組合的模態積分法;彈塑性時程分析選擇逐步積分法。根據結構構件的受力狀況,彈塑性時程分析時采用軸力——雙向彎矩耦合鉸(P-M-M鉸)。
5.2分析結果。
結構變形的驗算結果列于表5,構件的承載能力驗算結果如表6所示。結構層間位移角和屋蓋撓跨比時程曲線如圖9所示,應力最大構件位置如圖10所示,罕遇地震下塑性鉸出現位置如圖11所示。
5.3結構抗震性能評價。
(1)地震作用下,兩種計算模型結構變形和構件承載能力均滿足抗震性能目標的要求,其中單獨模型結構變形遠小于整體模型,且不同地震水平作用下,構件應力差異不大,這表明采用單獨模型,地震效應被低估。
(2)罕遇地震作用下,單獨模型所有構件保持彈性;整體模型由于承受較大側向力作用,部分連梁和支撐構件屈服,結構共10處出現塑性鉸,其中P鉸1處,P-M-M鉸9處。進入塑性的構件占構件總數的0.62%,結構整體進入彈塑性工作狀態,耗能構件發揮作用,但結構整體變形和關鍵構件應力均在限值范圍內,該結構具有良好的抗震性能。
6. 結論
(1)該結構兩種計算模型的動力特性差異顯著。對于復雜結構體系,忽略下部結構的影響,僅對上部結構進行動力分析結果并不準確。
(2)根據國內外設計規范,本文從結構變形和構件承載能力兩方面制定結構的抗震性能目標。采用按較短角柱側移和屋蓋撓跨比控制結構變形。多遇地震、設防烈度地震和罕遇地震作用下的側移限值依次為1/250、1/125和1/50,多遇地震下撓跨比限值為1/250。構件承載能力性能目標為:多遇地震、設防烈度地震作用下,構件保持彈性;罕遇地震作用下按構件分類控制,主要構件保持彈性,耗能構件允許屈服但不破壞。此性能目標可以反映結構的安全要求且可操作性強。
(3)罕遇地震下,耗能構件進入塑性階段,結構體系合理,抗震性能滿足要求。
參考文獻
[1]李金龍, 空間結構與下部結構協同工作簡化分析方法研究, 2009, 天津大學.
[2]陳應波, 陳軍明, 網殼結構與下部結構協同工作的研究. 華中科技大學學報(自然科學版), 2004(3): 第49~50+53頁.
[3]曹資等, 網殼屋蓋與下部支承結構動力相互作用研究. 空間結構, 2001(2): 第19~26頁.
[4]劉成軍, 網殼結構與下部支承體系協同工作的研究, 2005, 東南大學.
[5]建筑抗震設計規范(GB50011-2010). 北京: 中國建筑工業出版社, 2010.
[6]建筑工程抗震設防分類標準(GB50223-2008). 北京: 中國建筑工業出版社, 2008.
[7]CECS160-2004, 建筑工程抗震形態設計通則, 北京: 中國計劃出版社.
[8]American Society of Civil Engineers. Seismic rehabilitation of existing buildings. Reston: ASCE/SEI 41-06, 2007.
[9]汪大綏等, 復雜結構彈塑性時程分析在ABAQUS軟件中的實現. 建筑結構, 2007(5): 第92~95+12頁.
[10]羅永峰, 楊木旺, 大跨度剛性空間結構地震反應的靜力彈塑性分析方法. 建筑科學與工程學報, 2008(3): 第73~80+114頁.
[11]羅永峰, 王磊等, 罕遇地震下上海中心超高層的性能化抗震設計. 同濟大學學報(自然科學版), 2011(4): 第467~473+613頁.
[12]謝開仲, 大跨度鋼管混凝土拱橋非線性地震反應分析與研究, 2005, 廣西大學.
[13]林家浩, 張亞輝, 趙巖, 大跨度結構抗震分析方法及近期進展. 力學進展, 2001(3): 第350~360頁.
[14]劉尚倫, 大跨度張弦桁架結構彈塑性地震響應分析, 2008, 太原理工大學.
[15]范峰, 空間網殼結構彈塑性地震響應及抗震性能分析. 哈爾濱建筑大學學報, 1999(1): 第32~37頁.
[16]程紹革, 王理, 張允順, 彈塑性時程分析方法及其應用. 建筑結構學報, 2000(1): 第52~56頁.
[17]黃鑫, 劉瑛, 黃河, 基于Push-over原理的SAP2000結構彈塑性分析實例. 青島理工大學學報, 2007(4): 第19~23頁.
[18]沈雁彬, 基于動力特性的空間網格結構狀態評估方法及檢測系統研究, 2007, 浙江大學.
[19]曲哲, 葉列平, 潘鵬, 建筑結構彈塑性時程分析中地震動記錄選取方法的比較研究. 土木工程學報, 2011(7): 第10~21頁.
[20]張笈瑋, 考慮地震空間效應的大跨度空間結構抗震分析與設計方法, 2009, 天津大學.
[21]孫玉萍, 空間網架結構彈塑性時程分析的關鍵技術. 甘肅工業大學學報, 1998(1): 第99~104頁.
[22]呂西林, 王亞勇, 郭子雄, 建筑結構抗震變形驗算. 建筑科學, 2002(1): 第11~15頁.
[23]丁陽, 張笈瑋, 李忠獻, 行波效應對大跨度空間結構隨機地震響應的影響. 地震工程與工程振動, 2008(1): 第24~31頁.
[24]裴星洙等, 日本抗震規范中有關地震力和輸入地震波的處理方法. 建筑結構, 2007(8): 第78~81頁.
[25]沈麒, 楊沈, 中日建筑抗震規范抗震設計比較. 工程抗震與加固改造, 2012(4): 第102~106頁.
[26]吳曉涵, 原中晉, 呂西林, 上海浦東國際機場T2航站樓彈塑性時程分析. 地震工程與工程振動, 2008(4): 第70~75頁.
[27]姜銳, 蘇小卒, 塑性鉸長度經驗公式的比較研究. 工業建筑, 2008(S1): 第425~430頁.
[28]鐘萬勰, 結構動力方程的精細時程積分法. 大連理工大學學報, 1994(2): 第131~136頁.
[29]儲德文, 王元豐, 精細直接積分法的積分方法選擇. 工程力學, 2002(6): 第115~119頁.
[30]趙巖, 林家浩, 唐光武, 復雜結構局部非線性地震反應精細時程分析. 大連理工大學學報, 2004(2): 第190~194頁.
[31]韋承基, 史鐵花, 薛彥濤, 合理振型數的確定及扭轉振型判定. 工程抗震, 2002(4): 第1~2+9頁.
[32]王福智, 王依群, 鄧孝祥, 振型數的選取及扭轉振型的確定. 天津理工大學學報, 2005(3): 第81~85頁.
[33]吳曉涵等, 上海世博會中國館結構彈塑性時程分析. 建筑結構學報, 2009(5): 第112~118頁.
[34]王蕊, 大跨度空間結構彈塑性時程分析, 2007, 天津大學.
[35]何慶祥, 沈祖炎, 結構地震行波效應分析綜述. 地震工程與工程振動, 2009(1): 第50~57頁.
[36]黃鑫, 大跨度空間結構抗震設計方法研究, 2007, 天津大學.