999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Fields of Degree 7(Ⅱ)*

2012-07-02 03:01:30LIYanmei
楚雄師范學院學報 2012年9期

LI Yanmei

(Department of Mathematics,Chuxiong Normal University,Yunnan Chuxiong,675000,China)

The phase portraits of planar Zq-equivariant Hamiltonian vector fields of degree 7 are much more complicated than that of degree 5,and only a few vector fields of degree 7 have been discussed[1—5].In this paper,we will classify the phase portraits of a new planar Z2- equivariant Hamiltonian vector field of degree 7

where k is a parameter with k>0.

1 Qualitative Analysis of the Singular Points

Because the system(1)has the property of Z2- equivariant,namely,the phase portrait is the same when it rotates π clockwise,so we only need to study the singular points in the first and second quadrants.

The Jacobian of this system is

in which

Discussing the Jacobians of these singular points,we can obtain the following results without difficulty:

Obviously,the function H(x,y)satisfies the equality H(x,y)=H(x,0)+H(0,y),and we can readily obtain

2 Phase Portraits of the System(1)

The Hamiltonian of the system(1)is

H(x,y)= [3x8- (k2+2k+2.36)x6+(0.51k2+1.02k+0.645)x4- 0.0675(k+1)2x2

Comparing the Hamiltonians of the singular points,we get the following results.

Theorem 2

(1)If0<k<0.239066,the phase portrait of the system(1)can be shown as Fig.1(1).

(2)If k=0.239066,the phase portrait of the system(1)can be shown as Fig.1(2).

(3)If 0.239066<k<0.255214,the phase portrait of the system(1)can be shown as Fig.1(3).

(4)If k=0.255214,the phase portrait of the system(1)can be shown as Fig.1(4).

(5)If 0.255214<k<0.2806248,the phase portrait of the system(1)can be shown as Fig.1(5).

(6)If k=0.2806248,the phase portrait of the system(1)can be shown as Fig.1(6).

(7)If 0.2806248<k<0.28217,the phase portrait of the system(1)can be shown as Fig.1(7).

(8)If k=0.28217,the phase portrait of the system(1)can be shown as Fig.1(8).

(9)If 0.28217<k<0.282535,the phase portrait of the system(1)can be shown as Fig.1(9).

(10)If k=0.282535,the phase portrait of the system(1)can be shown as Fig.1(10).

(11)If k >0.282535,the phase portrait of the system(1)can be shown as Fig.1(11).

Proof

We denote H(0,0),H(± a,0),H(± b,0),H(± c,0),H(0,l),H(0,m),H(0,n),H(± a,l),H(± a,m),H(± a,n),H(± b,l),H(± b,m),H(± b,n),H(± c,l),H(± c,m),and H(± c,n)by h00,ha0,hb0,hc0,h0l,h0m,h0n,hal,ham,han,hbl,hbm,hbn,hcl,hcmand hcm,respectively.Obviously,we have hxy=hx0+h0y,h0l=h0n,h0m=0.

(1)If k=0.229005,then hcl=ha0.Hence,when 0 < k < 0.239066,the Hamiltonians of the singular points satisfy the relations hal=han<ha0=ham≤hcl=hcn<hc0=hcm<hbl=hbn<hb0=hbm<h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(1).

(2)When k=0.239066,we have hcm=hbl,and the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham<hc0=hcm=hbl=hbn<hb0=hbm<h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(2).

(3)When 0.239066<k<0.255214,the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham<hbl=hbn<hc0=hcm<hb0=hbm≤h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(3).

(4)When k=0.255214,we get ha0=hbl,and the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham=hbl=hbn<hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(4).

(5)When0.255214<k<0.2806248,the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<hbl=hbn<ha0=ham<hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(5).

(6)When k=0.2806248,we obtain aa0=hc0,and the Hamiltonians of the singular points satisfy the relations hal=han=hcl=hcn<hbl=hbn<ha0=ham=hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(6).

(7)When 0.2806248<k<0.28217,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<ha0=ham<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(7).

(8)When k=0.28217,we obtain ha0=hol,and the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<ha0=ham=h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(8).

(9)If 0.28217<k<0.282535,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<h0l=h0n<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(9).

(10)If k=0.282535,we get h0n=hc0,and the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm=h0l=h0n<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(10).

(11)If k >0.282535,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<h0l=h0n<hc0=hcm<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(11).

Fig.1(1)~(11)The phase portraits of system(1)

[1]Wu Kaiteng,Cao Hongjun.Classification of phase portraits about planar quintic Z4- equivariant vector fields.Proceedings of the third international conference on nonlinear mechanics[M].Shanghai:Shanghai University press,1998:873—877.

[2]Li Yanmei.The classification of phase portraits about some Hamiltonian vector field with Z3- equivariant property [J].Journal of Yunnan Normal University,2003,23(6):5—7.

[3]Li Yanmei.The General Form and Phase Portraits of Planar Septic Hamiltonian Vector Field with Z8- Equivariant Property [J].Journal of Chuxiong Normal University,2010,25(12):32—35.

[4]Li Yanmei.The Phase Portraits of a type of Planar Septic Hamiltonian Vector Field with Z2- Equivariant Property [J].Journal of Chuxiong Normal University,2011,26(9):47—50.

[5]Li Yanmei,Hu Zhao.Classification of Phase Portraits of Z2- Equivariant Planar Hamiltonian Vector Fields of degree 7(Ⅰ)[J].Journal of Chuxiong Normal University,2012,27(6):1—4.

主站蜘蛛池模板: 激情六月丁香婷婷| 真实国产乱子伦高清| www亚洲天堂| 国产精品久久国产精麻豆99网站| 蜜桃臀无码内射一区二区三区 | 成人在线天堂| 99ri精品视频在线观看播放| 欧美一区二区三区香蕉视| 噜噜噜久久| 亚洲成人在线免费| 国产欧美专区在线观看| AV在线麻免费观看网站| 国产精品综合久久久| 日本精品一在线观看视频| 亚洲综合极品香蕉久久网| 一级一级一片免费| 中文字幕日韩丝袜一区| 国产福利一区二区在线观看| 亚洲激情区| 中文字幕有乳无码| AⅤ色综合久久天堂AV色综合| 99热这里只有精品2| 日本高清视频在线www色| 激情爆乳一区二区| 亚洲全网成人资源在线观看| 国产成人av一区二区三区| 日本免费a视频| 国产亚洲欧美日韩在线一区| av无码一区二区三区在线| 免费av一区二区三区在线| 国内精品视频| 欧美亚洲激情| 欧美亚洲一区二区三区导航| 欧美黄色a| 日韩在线观看网站| 亚洲日本www| 久久精品嫩草研究院| 欧美日韩午夜视频在线观看 | 国模粉嫩小泬视频在线观看| 91精品久久久久久无码人妻| 精品無碼一區在線觀看 | 91久久夜色精品| 99精品视频播放| 香蕉视频在线观看www| 91小视频版在线观看www| 久久久久国产精品免费免费不卡| 一级一级特黄女人精品毛片| 国产男女XX00免费观看| 特级aaaaaaaaa毛片免费视频| 免费观看男人免费桶女人视频| 青青操视频免费观看| 中国一级特黄大片在线观看| 在线另类稀缺国产呦| 亚洲精品成人7777在线观看| 精品免费在线视频| 成人午夜天| 99精品久久精品| 久久精品电影| 亚洲一区二区在线无码| 国产偷国产偷在线高清| 在线观看欧美精品二区| 午夜精品一区二区蜜桃| 国产在线精彩视频论坛| 又爽又大又黄a级毛片在线视频| 亚洲精品无码久久毛片波多野吉| 亚洲视频一区| 欧美综合中文字幕久久| 国产精品一线天| 欧美精品v日韩精品v国产精品| 亚洲欧美一区在线| 四虎永久在线| 97se亚洲综合| 91无码人妻精品一区| 人人妻人人澡人人爽欧美一区| 国产成人精品视频一区二区电影| 国产精品亚欧美一区二区三区| 最新国产精品第1页| 亚洲一区二区日韩欧美gif| 国产免费久久精品44| 99re视频在线| 久久久久久午夜精品| 特级欧美视频aaaaaa|