考核方式改革是整個教學改革的重要內容之一,考試形式過于固定,容易束縛學生的學習積極性,很難達到考試對于學習的促進目的。近幾年,在大學數學課程的教學過程中嘗試了多種新的考核方式,旨在讓考試真正成為督促學生學習、調動學生學習積極性的有效手段和檢驗途徑。
大學數學考試模式考核方式一、引言
大學數學主要包含高等數學、線性代數、概率與數理統計這三門課程,是大學課程體系中的公共基礎課,要求學生必須切實掌握解決問題的方法和分析能力,但作為檢驗手段的考試,目前大多數院校仍主要以期末“終結性”考核為主,而這種形式過于固定的考核方式容易造成學生“突擊式”學習的狀況,學生對知識掌握得非常膚淺,缺乏學習的主動性,對于重要的數學知識和思路方法都以機械式的記憶為主,而無法做到靈活應變,舉一反三。
這就需要變革這種單一的考核模式,使得考試真正成為督促學生學習、檢驗學生學習情況的有效手段,起到促進學生全面發展、提高其素質的作用,實現學生對于知識和方法由“學會”轉變為“會學”,繼而“會用”的目標。
基于上述考慮,筆者團隊在近幾年的大學數學課程教學過程中,對考試模式進行了改革,主要是增加了每章完成后的階段式測試,并且嘗試多樣化的考核方式進行測驗,和期末考試的成績綜合測評,徹底打破“一考定終身”的局面。
二、大學數學課程考試模式的改革措施
1.學生出試卷模式
學生懼怕考試,似乎是天經地義的事,其實,學生對考試的畏懼情緒緣于試卷的“神秘”度,正是這種試卷的神秘度引發了學生的心理壓力。而讓學生自己出試卷的模式完全減輕了學生的這種心理負擔,激發了考試的興趣與復習的積極性,教學效果明顯提高。具體做法是:
(1)教師宣布學生出題的考試模式,學生的興奮度即刻替代了考試的緊張感。
(2)每個學生必須出一份試卷,并做好標準答案交給老師,這一過程保證了學生對知識點的復習功效,為了能出好卷并提供正確答案,學生不得不把基本的數學知識點理解透徹。
(3)考試試卷的題目將在全班學生的試卷中抽取,向學生承諾試卷的全部內容是班內學生試卷的原題,但每個學生被抽到的題目最多一題。
(4)考試評分時學生本人試卷的質量評分占總成績的30%,卷面成績占總成績的70%。
這種考試模式提倡學生的學習自主性,激發了學生學習的積極性與主動性。
2.試題采用學生自選分級模式
由于學生的數學基礎參差不齊,因此對于大學數學課程的掌握和理解程度也相應不同,而一份試卷如果難度偏高或者偏低,都會對一部分學生很不公平,為了解決這一問題,可以嘗試如下做法:
試卷主體仍然按照知識點的要求和分布情況進行出題,即基本題占70%左右、提高題占20%左右,較難題占10%左右。不同的是,在占20%的提高題方面給學生增加選擇。比如,增加自選題或者兩道題目中自選一題,這就是分級。具體的,可以設置A級題為10分,B級題為6~7分(若分為三級,則分數分別為——A級10分,B級7分,C級5分),學生只能在每個級別中選做其中一題。這種考核方法既解決了試卷難度的問題,又解決了試卷中基本題分量不足的問題,對于數學類課程進行分層次教學的院校,這樣的試卷模式為其面臨的是否同卷考核的問題更是一種有效的解決方法。
3.數學小論文模式
平時的測驗還可以嘗試與傳統筆試不同的考試形式——數學論文,這種論文并非真正科研意義層次的論文,而是要求學生對所學知識深人理解以及對知識與方法善加整理后形成的一種報告形式。這種論文可以是一個知識點涉及數學方法的總結,如單調性應用的總結——證明不等式、證明根的唯一性及證明函數存在反函數;再如,函數零點的存在性的證明方法有零點定理、羅爾定理、函數單調性等。論文也可以是對于一個核心知識點構成的小的知識體系的總結,如分段函數段點處的極限、連續性、可導性和分段函數可積性的討論總結;再如,積分計算中偶倍奇零性質在一元函數定積分、二重積分、三重積分、二元函數線積分、三元函數面積分中的應用等。論文還可以是一道典型數學題的多種解法,等等。這種考試形式能夠促使學生對所學的知識重新整理、歸納和組織,從而在較高的層面上高屋建瓴地系統掌握大學數學的知識和方法,達到真正意義上的復習。
4.應用數學建模考題模式
學習的目的就是應用,而且應用題可以考查學生分析問題和綜合運用知識解決問題的能力,應是考試的重點。而數學建模的試題正是考察學生能否正確地分析問題,建立模型,并將對模型的求解轉化為計算機可計算的數學問題進行求解。所以,可考一些涉及因素稍多些的建模應用題,讓學生建立模型并轉化為平時常做的運算,具體計算可不進行,也可將應用部分單獨考試。平時還可以讓學生做一些小的數學建模練習,作為平時測驗的成績。比如,往屆數學建模競賽中的導彈打飛機問題、臺燈最佳高度問題等,只要用些微積分知識就可以解決,較好的考察了學生學以致用的能力。各專業也可根據自身特點來做一些實際問題,這樣不僅可以增加學生對數學課程的興趣,還可以培養學生綜合運用數學知識和數學思維解決實際問題的能力。
5.開卷考試模式
高等數學通常安排在新生入學第一學期,新生剛入學,對老師、教材、教學方法都不熟悉,很難看出課本中各例題間的聯系,即自學能力較差。此時的階段性測驗可以安排開卷考試,允許學生考試時翻閱教材及相應的參考資料,不熟悉教材就難以完成考題。所以,開卷考試在一定的程度上是促使學生看書自學的最佳動機,使學生體驗到看教材及相應的參考資料是取得好成績所必需的和有價值的。在這種需要的支持下,久而久之,看書習慣會培養學生總結性和研究性學習的能力,為終生學習打下良好的基礎。
三、改革的成效
我們在平時的階段式測驗時常常會根據每一章的特點,選取上述模式中的一種或者兩種綜合運用,以考察學生對于數學知識的理解和掌握。這樣多樣化的考試模式和考核方式有效地激發了學生學習大學數學課程的興趣和熱情,改變了一部分學生為應付考試而消極學習的狀態,讓數學基礎不同、對于大學數學課程有不同需求的學生都能夠真正達到自己的學習目標。考試也不再只充當讓學生談之色變的“懲罰武器”,而是成為了真正意義上調動學生學習積極性,促進學生學習和提高的有效手段與檢測途徑。
參考文獻:
[1]張杰,徐中海.數學課程考核方式的改革及實踐[C].大學數學課程報告論壇論文集2005.北京:高等教育出版社,2005.151-153
[2]傅葦,徐彩霞,龍蘭,鄒莉娜.大學本科數學考試模式改革探索與思考[J].重慶科技學院學報(社會科學版),2008,(5):202-203
[3]鄭艷琳,高國成,唐林煒.中外合作辦學大學數學教學模式研究[J].理工高教研究,2010,(4):115-117.