999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

有限總體中基于廣義Liu 估計的預測及其小樣本性質

2012-01-01 00:00:00黃介武
經濟數學 2012年1期

摘 要 在有限總體中提出了一類基于廣義Liu估計的新的預測,得到了基于廣義Liu估計的預測在預測均方誤差意義下優于最優線性無偏預測的充要條件,并通過實例對理論成果進行了進一步的說明.

關鍵詞 有限總體;預測均方誤差;最優線性無偏預測;廣義Liu 估計

中圖分類號 O 212.4 文獻標識碼 A

A Predictor Based on the Generalized Liu Estimator

in Finite Populations and Its Smallsample Properties

HUAMG Jiewu1,2

(1.College of Science, Guizhou University for Nationalities, Guizhou, Guiyang 550025;

2.College of Mathematics and Statistics,Chongqing University,Chongqing 401331)

Abstract This paper proposed a new predictor based on the generalized Liu estimator in finite populations.The necessary and sufficient conditions for the superiority of the predictor based on the generalized Liu estimator over the best linear unbiased predictor in the prediction mean squared error sense were derived. Furthermore, a numerical example was given to illustrate some of the theoretical results.

Key words finite populations; prediction mean squared error; best linear unbiased predictor, generalized Liu estimator

1 Introduction

The problem of prediction in finite populations received considerable attention in the past several decades.As we can see, most of works in the existing literatures are in the context of linear unbiased prediction, such as Hendserson[1], Perieira and Kodrigues[2], Bolfarine et al.[3], Yu and He[4] and Rueda et al.[5]. However,the prediction mean squared error of the best linear unbiased predictor(BLUP) will become inflated when there exists multicollinearity among the explanatory variables and the results of regression will be often unacceptable.In this case, some prediction methods have been developed to improve the best linear unbiased predictor, one of these methods is the biased prediction method. Hoerl and Kennard[6]proposed the socalled ridge regression method which isunaffected by multicollinearity among the many independentvariables. Wang[7] proposed adaptive ridgetype predictors in finite population.

Our primary aim in this paper is to introduce a new predictor based on the generalized Liu estimator[8] to combat the multicollinearity. The proposed predictor is biased, and we discuss its superiority over the best linear unbiased predictor in the prediction mean squared sense in some detail.

The remainder of this paper is organized as follows. In Section 2, we introduce the model specifications, some corresponding definitions and lemmas.Some properties of the predictor based on the generalized Liu estimator are discussed in Section 3. Then, a numerical example is provided to illustrate some of the theoretical results in Section 4 .

2 Preliminaries

Let Ω={1,2,…,N}be the set of labels of the units of a finite population of size N, where N is known. Associated with the ith unit of Ω, there are p+1 quantities:

yi,xi1,…xip,i=1,2,…,N, where all but yi are known. Denote y=(y1,y2,…yN)′and X=(X1,X2,…,XN)′, where Xi=(xi1,xi2,…,xiN)′,i=1,2,…,N.

We consider a linear model from Ω denoted by

y=Xβ+e,E(e)=0,cov (e)=σ2V。 (1)

where e is an Ndimensional random vector of error variables, V is a known positive matrix, while β is a p×1 vector of unknown parameters, E(·)and cov (·)denote the expectation and variance of random vector.

Consider linear model (1), suppose that a sample of size s is selected from Ω by using some specified sampling design,r=N-s is the rest labels which are not in the sample. The objective is to predict values of linear function θ=l′y from a sample,where lis a known vector. If we take l=(1,…,1)′,then θ=l′y is the population total. Listing without loss of generality the sampled units first, we may partition ony,X e and V as follows:

經 濟 數 學第 29卷第1期黃介武:有限總體中基于廣義Liu 估計的預測及其小樣本性質

y=ysyr,X=XsXr

e=eser,V=VsVsrVrsVr.

Definition 1 Let θ be a linear predictor of θ=l′y, θ is said to be the best linear unbiased predictor (BLUP) under the finite populations defined by (1) if

(i)θ is unbiased, i.e.E(θ*-θ)=0

(ii) E(θ-θ)2≤E(-θ)2 for any linear unbiased predictor  of θ=l′y.

Lemma 1 Under the finite populations defined by (1), let V >0,V rs=V sr=0, then the BLUP of θ=l′y is given by

U=l′sys+l′rXrOLE,(2)

where OLE=(X′sV-1sXs)-1X′sV-1sys is the ordinary least squares estimator.

Definition 2 Under the finite populations defined by eq.(1), let V>0, Vrs=Vsr=0, the predictor based on the generalized Liu estimator D of θ=l′y is defined as

D=l′sys+l′rXrLE, (3)

where LE=(X′sV-1sXs+I)-1(X′sV-1sXs+D)OLE is the generalized Liu estimator ofβ with D=diag(d1,d2,…,ds),0<di<1,i=1,2,…,s,being the Liu parameters [ 9].

When D=diag(d,d,…,d),0<d<1,we denote d=D which is called the predictor based on Liu estimator.

In order to compare the predictors, we provide with a notion of prediction mean squared error (PMSE).

Definition 3 Under the finite populations defined by eq.(1), let be a predictor of θ, the prediction mean squared error of  is defined as

PMSE()=E(-θ)′(-θ) .(4)

Lemma 2 Under the finite populations defined by eq.(1), for any predictor  of θ=l′y, we have

PMSE()=l′rXrMMSE()X′rlr+σ2l′rVrlr .See [7].

Lemma 3 Let M be a positive definite matrix, namely M>0, α be some vector, then M-αα′≥0 if and only if α′M-1α≤1. See [10].

3 Properties of the predictor based on the generalized Liu estimator

Theorem 1 Under the finite populations defined by eq.(1), let V>0,Vrs=Vsr=0, the predictor based on generalized Liu estimator D of θ=l′y is biased.

Proof: ‖E(D)-θ‖=

‖l′sXs+l′rXrE(LE)-l′sXs-l′rXr‖

=‖l′rXr‖×||β‖×

‖(X′sV-1sXs+I)-1(X′sV-1sXs+D)-I|

=‖l′rXr‖×‖β‖×||(D-I)(Λ+I)-1‖,

where

Λ=diag(λ1,…,λs)=Q(X′sV-1sXs)Q′, 

λi>0,1=1,…,s,Q is an orthogonal matrix.

Noted that 0<di<1,i=1,2,…,s, these imply that ‖E(D)-θ‖≠0, that is, D is a biased predictor of θ=l′y.The proof is completed.

From Lemma 2, we have

PMSE(D)=l′rXrMMSE(D)X′rlr+σ2l′rVrlr,

PMSE(U)=l′rXrMMSE(OLE)X′rlr+σ2l′rVrlr.

In order to compare D with U in the PMSE sense, we investigate the difference

Δ=PMSE(D)-PMSE(U)

=l′rXr(MMSE(D)-MMSE(U))X′rlr.

Noted that

MMSE(D)-MMSE(U)

=σ2FDSFD-σ2S-1+(FD-I)ββ′(FD-I)

=(S+I)-1σ2(S+D)S-1(S+D)+

(D-I)ββ′(D-I)(S+I)-1-

σ2(S+I)-1(S+I)S-1(S+I)(S+I)-1,

where S=X′sV-1sXs,FD=(S+I)-1(S+D).

Thus Δ≤0 if and only if

S-1-DS-1D-2(D-I)

≥1σ2(D-I)ββ′(D-I).

Applying Lemma 3, we have Δ≤0 if

and only if

β′(D-I)-1S-1-DS-1D-2(D-I)×

(D-I)-1β≤σ2.

So, we may state the following theorem:

Theorem 2 The predictor based on generalized Liu estimator D is superior to the best linear unbiased predictor U in the PMSE sense, if and only if

β′(D-I)-1S-1-DS-1D-2(D-I)×

(D-I)-1β≤σ2. (5)

When

D=diag(d,d,…,d),0<d<1,

educes to the necessary and sufficient condition for superiority of the predictor based on Liu estimator d over the best linear unbiased predictor U in the PMSE sense, given as follow:

β′1+d1-dS-1+21-dI-1β≤σ2(6)

4 Numerical example

To illustrate our theoretical results we consider the dataset on Portland cement ever considered by Zhong and Yang [1]. In this article, we use the same data, try to illustrate that the proposed predictor is superior to the best linear unbiased predictor under certain conditions. Our computations were performed by using Matlab. We assemble our data as follows:

The four columns of the matrix X comprise the data on x1,x2,x3 and x4 respectively.

Firstly, we can obtain the eigenvalues of X′Xas λ1=446 76.21,λ2=5 965.42,

λ3=809.95,λ4=105.42,λ5=0.001 23,

and the condition number is approximately 3.66793e+007 .So the design matrix X is quite illconditioned.

Then, partitioning the data, let s=11,r=2,

y=ysyr,X=XsXr and θ=1′13y,where 1′13=(1,1,1,1,1,1,1,1,1,1,1,1,1).In this case,

we consider the estimated PMSE values of d and U and their corresponding estimated values of σ2 and

β′1+d1-dS-1+21-dI-1β .

which are denoted by 2 and  respectively. The results are showed in Table 1.

Table1 The values of ,2,PMSE()and

PMSE(d)for θ=1240.5

d

We can see from Table 1 that when  is smaller than 2 which implies that condition (6) is satisfied, we have

PMSE(d)<PMSE(OLE), which illustrates the conclusion of Theorem 2

References

[1] C R HENDSERSON. Best linear unbiased estimation and prediction under a selection model [J].Biometrics,1975, 31(2): 423-447.

[2] C A B PEREIRA, J RODRIGUES. Robust linear prediction in finite populations [J]. Internat Statist Rev,1983,51(1):293-300.

[3] H BOLFARINE, S ZACKS,S N ELIAN. Optimal prediction of the finite population regression coefficient[J].Sankhya Ser B, 1994, 56(1): 1-10.

[4] S H YU, C Z HE. Optimal prediction in finite populations[J]. Appl.Math.J. Chinese Univ Ser A,2000,15(2): 199-205.

[5] M RUEDA, I R S BORREGO. A predictiveestimator of finite population mean using nonparametric regression [J]. Comput Stat,2009,24(1):1-14.

[6] A E HEORL, R W KENNARD. Ridge regression: biased estimation for nonorthogonal problems [J].Technimetrics, 1970, 12(1): 55-67.

[7] S G WANG.Adaptive ridgetype predictors in the finite population [J].Chinese Science Bul1, 1990, 35(11): 804-806.

[8] F AKDENIZ, S KACIRANLAR.On the almost unbiased generalized Liu estimator and unbiased estimation of the Bias and MSE[J].Commun. Statist. Theor. Meth ,1995,24(7):1789-1797.

[9] Z ZHONG,H YANG.Ridge estimation to the restricted linear model [J]. Commun Statist Theor Meth,2007,36:2099-2115

[10]R W FAREBROTHER. Further results on the mean square error of ridge regression[J].J R Stat Soc Ser B1976,38(3):248-250.

主站蜘蛛池模板: 亚洲av无码片一区二区三区| 国产成人免费观看在线视频| 亚洲第一视频免费在线| 久久这里只精品国产99热8| 精品一区二区三区视频免费观看| 2021国产精品自拍| 久久精品丝袜| 亚洲男人在线天堂| 国产视频只有无码精品| 国产精品白浆无码流出在线看| 国产精品亚洲欧美日韩久久| 一级黄色网站在线免费看| 国产精品永久久久久| 伊人天堂网| 99伊人精品| 欧美伦理一区| 亚洲国产综合精品一区| 国产欧美日韩18| 国产精品人莉莉成在线播放| 国内精品免费| 9啪在线视频| 国产福利一区视频| 欧美色综合网站| 青草娱乐极品免费视频| 亚洲综合狠狠| 国产资源免费观看| 美女国内精品自产拍在线播放| 久久久亚洲国产美女国产盗摄| 国产91视频观看| 久久精品这里只有国产中文精品| 久久青草免费91线频观看不卡| 2020国产精品视频| 婷婷综合在线观看丁香| a毛片在线| 色综合热无码热国产| 国产高清免费午夜在线视频| 国产手机在线小视频免费观看| 91在线激情在线观看| 国产午夜无码专区喷水| 波多野结衣中文字幕一区| 四虎成人精品在永久免费| 国产成人综合久久精品尤物| 国产精品久久久久久久伊一| 波多野结衣一区二区三区88| 国内精品一区二区在线观看| 日韩精品专区免费无码aⅴ| 欧美亚洲激情| 欧美亚洲一区二区三区导航| 成人永久免费A∨一级在线播放| 欧美日本在线播放| 日本成人精品视频| 国产乱子伦视频在线播放| 国产三级精品三级在线观看| 亚洲视频欧美不卡| vvvv98国产成人综合青青| 毛片卡一卡二| 国产精品亚洲一区二区三区在线观看| 素人激情视频福利| 亚洲丝袜第一页| 视频在线观看一区二区| 91美女在线| 成人午夜天| 久久精品aⅴ无码中文字幕 | 露脸国产精品自产在线播| 国产清纯在线一区二区WWW| 97视频精品全国免费观看| 亚洲成a∧人片在线观看无码| 久久综合结合久久狠狠狠97色| 色婷婷亚洲十月十月色天| 国禁国产you女视频网站| 中文国产成人久久精品小说| 亚洲毛片一级带毛片基地| 久久免费看片| 一级片免费网站| 亚洲综合天堂网| 婷婷99视频精品全部在线观看| 538国产视频| 成人免费黄色小视频| 伊在人亚洲香蕉精品播放| 五月天香蕉视频国产亚| 国模极品一区二区三区| 国产精品成人啪精品视频|