摘 要: 目前,由于高職院校學生的文化素養不高、數學底子較薄、對數學的理解能力較弱,另外高職院校《高等數學》課程細分化程度不夠,大多數專業仍然按照統一的教材和原有的知識結構進行設置,使得不同類專業的學生,學習高等數學的內容完全一樣或者絕大部分都一樣,區分度不大。本文作者主要從課程概況、課程實施與課程規劃三個方面對高職院校《高等數學》課程設置談談個人的認識。
關鍵詞: 高職院校 《高等數學》 課程設置
目前,由于高職院校學生的文化素養不高,導致高職數學發展緩慢,而高職數學課程設置的不夠合理加速了學生對數學的恐懼心理。并且高職數學教學內容偏多,教學課時又不充足,使得學生不能很好地理解掌握所學知識,最后導致學生沒有掌握真正有用的數學,而把時間和精力花費在對他們專業沒有多大幫助的內容上。因此,通過重新設置課程來彌補這些不足,使學生能夠真正學到有用的數學是非常必要的。
我主要從課程概況、課程實施與課程規劃三個方面對高職院校《高等數學》課程設置談談個人的認識。
1.課程概況
《高等數學》課程概況包括課程定位、性質、地位和作用;課程設計理念與思路;課程目標與內容等三部分情況。
1.1課程定位、性質、地位和作用
1.1.1課程定位
《高等數學》課程應該定位為基礎課、文化課、工具課、預備課。作為基礎課,《高等數學》課程是高職高專院校各個專業必修的一門重要基礎理論課程,它為專業基礎課和專業課程服務;作為文化課,數學不只是人類智慧的結晶,它也是一種非常重要的文化;作為工具課,《高等數學》課程為學生提供各種分析和計算工具,可以解決生產生活中一些實際問題;作為預備課,《高等數學》課程也是學生進一步學習本科課程的預備課程。
1.1.2課程的地位和作用
《高等數學》課程為學生后繼專業基礎課程的學習奠定必要的數學基礎,提供進行分析和計算的工具,數學模型可用來解決生產生活中的實際問題。通過學習高等數學知識,能夠培養學生的數學思維、數學素質、創新能力與實際應用能力,能夠全面提升學生適應未來社會發展的綜合素質和能力。
從學生專業學習與就業未來看,《高等數學》課程的作用主要表現在以下兩個方面。
1.1.2.1服務學生專業學習
《高等數學》課程是學生在高中數學的基礎上,進一步學習并掌握本專業和相關專業技術領域職業崗位(群)所必須掌握的數學概念、數學方法和運算技能,培養學生能夠把實際專業問題轉化為數學模型并對模型進行分析求解的能力,使《高等數學》課程有效地服務于專業課程的學習。
1.1.2.2面向學生就業未來
從課程的基礎性質出發,提升學生的科學文化素養,向學生傳授分析和解決實際問題的數學思想和方法,培養學生適應未來社會發展的綜合素質和能力,促進學生數學應用、自主學習、表達交流、自我提高、與人協作、解決問題等能力的持續發展。
1.2課程設計理念與思路
高等數學作為培養和造就各類專門人才的重要基礎之一,要完成以就業為導向,以培養學生在專業領域實際工作所必備的基本能力和基本技能的根本任務。高職院校《高等數學》課程設置要堅持“以應用為目的,以必需夠用為度”的高職教育理念,以“掌握概念、強化應用;培養技能、突出服務”為指導思想,淡化理論體系的推理和證明,注重學生的應用能力的培養。由此,我們要做到合理調整教學內容,堅持以必需夠用為度,構建出彈性化課程設置體系,進行模塊式教學;注重數學應用能力與數學素質的培養,把數學建模融合到高等數學教學中,使學生真正能學以致用,體會數學是有用的,數學就在我們身邊。
例如,灑水車中求壓力問題為要用到積分知識來計算;某街道安裝公用電話亭的個數問題、十字路口東西南北方向紅綠燈時間分配問題等都要用到高等數學中的微積分知識,并使用數學建模方法來幫助解決。這些生活中的實際應用例子充分說明數學是有用的,數學就在我們身邊。
1.3課程目標與內容
1.3.1教學目標
知識培養目標:通過本課程學習,讓學生掌握高等數學的基本概念和基本運算,使學生能夠獲得相關專業課程所必須掌握的、適應未來工作及進一步發展所必需的數學知識。
能力培養目標:通過本課程學習,培養學生比較熟練的運算能力、空間想象能力、抽象思維能力和邏輯推理能力,培養學生具有綜合運用所學知識去分析、解決問題的能力。
情感培養目標:通過本課程學習,培養并加強學生自主探索學習的意識,相互協作解決問題的意識,提高數學文化素養。
1.3.2課程內容
由于各高職院校《高等數學》課程課時不斷縮減,日益減少,有的專業甚至直接砍掉《高等數學》課程。為真正服務于各專業的人才培養目標,體現學生的主體地位,我們以“必需、夠用”為原則,淡化理論論證,對課程內容與授課時數作合理調整。因此我們要根據實際課時安排情況,以及專業需求合理安排教學內容,為專業服務。
一般情況下,《高等數學》課程內容由公共基礎模塊、擴展模塊、數學實驗等三個模塊構成。公共基礎模塊主要內容為一元微積分學知識,包括函數的極限與連續、導數與微分、導數的應用、不定積分、定積分及其應用等。導數的應用、定積分及其應用側重于數學知識的應用,利用數學建模幫助解題。擴展模塊主要內容包括常微分方程、多元函數微積分、線性代數、概率論與數理統計等知識。數學實驗模塊以培養學生現代技術應用能力為主線,對專業相關的實際問題通過數學實驗來解決,充分體現“教學做一體化”。
1.3.3教學重點、難點及解決的辦法
教學重點:《高等數學》中的基本概念、基本理論、基本計算方法與涉及的數學思想方法。
教學難點:抽象概念的引入與定理的理解和應用。
為了做到重點突出,難點突破,教師在教學中盡量多地采用實例為背景引入概念(如,極限的概念、導數的概念、定積分的概念等),讓學生將數學與生活實際聯系起來,在學生充分理解數學知識的基礎上,再用于分析、處理各種實際經濟、工程問題,由淺入深,遵循由易到難,從具體到抽象的循序漸進的認知規律,以問題驅動,淡化純粹數學理論的推導與證明,借助多媒體展示直觀的圖形與形象的變化趨勢,來幫助學生認識抽象的數學概念。在鞏固數學理論階段,應選取有專業背景的實例進行有效的訓練,使數學知識真正有所用,增強學生的理論應用意識。對于數學運算中過于復雜、繁瑣的運算,借助數學軟件來解決。
1.3.4選用教材
教材是教學的重要載體。根據教學目標與教學內容的安排來選擇適用的教材開展教學。選用合適的教材非常重要,適用的教材可以為《高等數學》教學提供有利條件。應從教學實際與學生學情出發來選擇教材,從高職高專人才培養目標出發,考慮學生的實際情況和專業需要。教材語言應通俗易懂、由易到難、循序漸進,遵循“掌握概念、強化應用、培養技能,突出服務”的教育理念,注重學生應用能力培養。大多數高職院校《高等數學》課程教材均采用本校教師自己主編、參編的教材。
1.3.5教學團隊(師資力量)
高素質教師隊伍與教學團隊的建設是產生良好教學效果的先決條件。因此要加強《高等數學》課程教學團隊建設,構建有效的團隊合作機制,開展教學研討和教學經驗交流,開發教學資源,加強青年教師的培養力度,發揚傳幫帶作用,推進教學工作的老中青相結合,形成一支年齡結構合理、教學水平較高的《高等數學》課程教學團隊。
2.課程實施
2.1教學設計
“教學有法,教無定法,貴在得法”。《高等數學》課程的教學設計要從學生已有知識和學生學情實際出發引入新課;啟發誘導學生主動參與教學活動;通過提出問題、分析問題和解決問題,讓學生掌握重點知識;通過舉例與練習鞏固加深理解知識,突破難點,提高對新知識的應用能力;點評練習作業,分析討論易錯點,最后小結。
2.2學法設計
學情分析:高職院校的學生絕大多數是從高中招入,學習過高中數學知識并且經歷過高考,但事實上多數進入高職院校學習的學生其數學基礎并不扎實。
學習方法指導:“授人以魚,只供一飯;授人以漁,終身受用。”教師在向學生傳授知識的同時必須教給他們學習的方法,讓他們學會學習。在教學中,盡可能遵循數學學習的主動性與積極性原則,在引導分析時,給學生提供充裕的思考時間,讓學生大膽地去質疑、探索,培養他們仔細觀察,深入分析,以及把未知轉化為已知、把復雜轉化簡單的能力。另外,還要注意適時引導學生反思自己的學習,取長補短,總結出適合自己的學習方法,不斷提高自學能力。
2.3教學方法
《高等數學》課程的教學方法利用多媒體輔助教學,采用啟發式、講授式、任務驅動式教學方法與案例分析教學法、自學指導等多種教學方法,“魚”“漁”結合,生動有趣。
例如用“案例教學法”引入數學概念,用“問題驅動法”展開教學內容,用“討論法”展開習題課的教學,用“對比法”引入新的數學概念與運算,適時地利用直觀性教學原則處理抽象的數學概念,采用分組競賽等教學手段激發學生學習數學的熱情。通過開展數學實驗,培養學生利用數學知識解決實際問題的能力;通過數學建模活動的開展,激發學生學習數學的積極性。
2.4教學評價
建立促進學生全面發展的評價體系,發揮評價的教育功能。
2.4.1倡導肯定性評價
要善于發現學生的閃光點,及時地給予肯定,加以鼓勵,幫助學生認識自我,建立自信心。
2.4.2重視形成性評價
我們在進行課程效果評價時,應更加重視形成性評價。為考查學生的學習效果,可以對同一專業的學生,采取統一試題、統一評卷、統一考核,客觀分析各班的教學和學習情況,但期末考試卷面成績只占學生綜評成績的70%。另外,教師根據學生的作業、到課情況、課堂表現等給出平時成績,占綜評成績的30%,因此學生本門課程的綜評成績為期末考試卷面成績與平時成績的綜合。這種定量加定性的評價方式提高了學生主動參與教學環節的積極性。
3.課程規劃
3.1課程模式多樣化
《高等數學》課程可以通過不同形式開設不同類別、不同性質的課程,例如開設公共必修課、專業選修課、公共選修課、數學競賽等。公共必修課與業選修課即各專業教學計劃中列入的高等數學課,是教學任務的主體,目的是結合各專業的實際,介紹有關高等數學基礎知識和基本的數學思想方法。公共選修課主要開設高等數學(專升本)、數學建模、數學實驗、趣味數學,以及數學與文化等。數學建模與數學實驗是以應用現代科技手段以解決復雜的數學問題為目的的高等數學新型課程。其目的為加強學生“學數學、用數學”的教育,培養學生運用所學知識建立數學模型,利用數學知識、計算機、數學軟件解決實際問題的能力,可以進行一些綜合實驗,以學生的專業為背景,設計一些綜合問題,讓學生體驗“實際問題—數學模型—實驗報告”的全過程,提高學生的應用意識及團結協作能力。另外,組織學生參加全國大學生數學建模比賽、趣味數學競賽以激發學生興趣。
3.2教學手段網絡化
在教學中教師要將傳統黑板加粉筆的教學手段與多媒體結合起來,對抽象的概念、定理等通過圖表、圖像、動畫等用多媒體直觀生動地表現出來,既便于學生理解掌握,又能解決課堂信息量不大的問題。同時將教學大綱、授課計劃、電子教案、教學課件、習題庫、試題庫、教師教學錄像等電子教學資源上傳,方便學生隨時查閱,爭取早日實現線上教學。