999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類具有Z2-等變性質(zhì)的平面七次哈密頓向量場(chǎng)的相圖

2011-11-18 06:38:58李艷梅

李艷梅

( 楚雄師范學(xué)院數(shù)學(xué)系,云南楚雄675000)

一類具有Z2-等變性質(zhì)的平面七次哈密頓向量場(chǎng)的相圖

李艷梅

( 楚雄師范學(xué)院數(shù)學(xué)系,云南楚雄675000)

In this paper,by the use of the method of qualitative analysis of differential equations,the phase portraits of a planar septic Hamiltonian vector fields with Z2-equivariant property are given and the parameter space is classified.

Z2-equivariant property;septic Hamiltonian vector field;singular point;phase portrait

In recent decades,the phase portraits of planar quintic Hamiltonian vector fields with equivariant property have been discussed[1~5],but few papers have discussed the phase portraits of planar septic Hamiltonian vector fields.In this paper,we will classify the phase portraits of following planar septic Hamiltonian vector fields with equivariant property,

where is a parameter with k>1

1 Properties of the Singular Points

The Jacobian of this system is

in which

φ2(y) =(y2-1)(y2-k)(y2-2k+1)+2y2[(y2-k)(y2-2k+1)+(y2-1)(y2-2k+1)+(y2-1)(y2-k)]

Discussing the Jacobians of these singular points,we have no difficulty in obtaining the following results:

Theorem 1The singular points(0,0),( ± 1.2,0),(0,m),( ± 1,1),( ± 1.3,1),( ± 1.2,m),( ± 1,n) ,and( ± 1.3,n)are center,and the others are saddle points.

2 Phase Portraits of the System(1)

The Hamiltonian of the system is

H(x,y)=[3x8-17.28x6+36.1632x4-32.4864x2+3y8-12ky6+6(2k2+2k-1)y4-12(2k2- k)y2]/24

Obviously,the function H(x,y)satisfies the equality H(x,y)=H(x,0)+H(0,y),and it is not difficult to get

H( ± 1,0)=H(± c,0)= - 0.4418,H(± 1.2,0)= - 0.4371148,

H(0,1)=H(0,n)= - (2k - 1)2/8,H(0,m)=k2(k2- 4k+2)/8,

H(0,m) - H(0,1)=(k - 1)4/8,H( ± 1,0)=H( ± c,0) < H( ± 1.2,0)

and H(0,1)=H(0,n) < H(0,m)

Comparing the Hamiltonians of the singular points,we obtain the following results.

Theorem 2

(a)If 1 < k < 1.44,the phase portrait of the system(1)is shown as Fig.1(a).

(b)If k=1.44,the phase portrait of the system(1)is shown as Fig.1(b).

(c)If 1.44 < k < 2.3711309,the phase portrait of the system(1)is shown as Fig.1(c).

(d)If k=2.3711309,the phase portrait of the system(1)is shown as Fig.1(d).

(e)If2.3711309 < k < 3.4142135,the phase portrait of the system(1)is shown as Fig.1(e).

(f)If k=3.4142135,the phase portrait of the system(1)is shown as Fig.1(f).

(g)If k > 3.4142135,the phase portrait of the system(1)is shown as Fig.1(g).

Proof Because H(x,y)=H(x,0)+H(0,y),H( ± 1,0)=H( ± c,0)and H(0,1)=H(0,m)we always have H( ±1,1)=H( ± c,1)=H( ±1,n)=H( ± c,n),H( ±1,m)=H( ± c,m),and H( ± 1.2,1)=H( ± 1.2,n),We separately denote H(0,0),H( ± 1,0),H( ± 1.2,0),H(0,1),H(0,m),H( ± 1,1),H( ± 1,m),H( ± 1.2,1)and H( ± 1.2,m)by h00,h10,hb0,h01,h0m,h11,h1m,hb1,and hbm.

(a)When 1<k<1.44,the Hamiltonians of the singular points satisfy the relations

h11<h1m<hb1<hbm<h10≤h01<h0m<h00

or h11<h1m<hb1<hbm<h10<h01<hb0<h0m<h00

so the phase portrait is shown as Fig.1(a).

(b)When k=1.44,we have h10=h01,hb0=h0m,and the Hamiltonians of the singular points satisfy the relations

h11<h1m=hb1<hbm<h10=h01<hb0=h0m<h00

so the phase portrait is shown as Fig.1(b).

(c)When1.44<k<2.3711309 the Hamiltonians of the singular points satisfy one of the following relations

h01<hb1<h1m<hbm<h01<h0m≤h10<hb0<h00,

h11<hb1<h1m<hbm≤h01<h0m<h10<hb0<h00,

h11<hb1<h1m<h01<hbm<h0m<h10<hb0<h00,

so the phase portrait is shown as Fig.1(c).

(d)When k=2.3711309,we get h1m=h01,and the Hamiltonians of the singular points satisfy the relations

h11<hb1<h1m=h01<hbm<h0m<h10<hb0<h00,

so the phase portrait is shown as Fig.1(d).

(e)When 2.3711309<k<3.4142135,the Hamiltonians of the singular points satisfy one of the following relations

h11<hb1<h01<h1m<hbm<h0m≤h10<hb0<h00,

h11<hb1<h01<h1m<hbm<h10<h0n≤hb0<h00,

h11<hb1<h01<h1m<hbm≤h10<hb0<h0m<h00,

h11<hb1<h01<h1m<h10<hbm<hb0<h0m<h00,

so the phase portrait is shown as Fig.1(e).

(f)When k=3.4142135,we obtain h0m=0,and the Hamiltonians of the singular points satisfy the relations

h11<hb1<h01<h1m=h10<hbm=hb0<h0m=h00,

so the phase portrait is shown as Fig.1(f).

(g)When k>3.4142135,we obtain h0m>0,and the Hamiltonians of the singular points satisfy one of the following relations

h11<hb1<h01<h10<h1m<hb0<hbm<h00<h0m,

h11<hb1<h01<h10<hb0≤h1m<hbm<h00<h0m,

h11<hb1<h01<h10<hb0<h1m<hbm≤h00<h0m,

h11<hb1<h01<h10<hb0<h1m≤h00<hbm<h0m,

h11<hb1<h01<h10<hb0<h00<h1m<hbm<h0m,

so the phase portrait is shown as Fig.1(g).

Fig.1(a) ~ (g)The phase portrait of Sy.(1)(a)when(b)when(c)when(d)when(e)when(f)when(g)when

[1]Chen Long-wei,Liu Zhongrong.Classification of phase portraits about planar quintic -equivariant vector fields[C].Proceedings of the third international conference on nonlinear mechanics.Shanghai University press,1998:769—772.

[2]Li Yan -mei.The global properties of some planar quintic Hamiltonian vector field with equivariant property[J].Journal of Yunnan University,2001,23(2):87—90.

[3]Li Yan - mei.The classification of phase portraits about some Hamiltonian vector field with equivariant property[J].Journal of Yunnan Normal University,2003,23(6):5—7.

[4]Chen Guo-wei,Yang Xinan.The Topological classification of plane phase diagram of a class of quintic Hamiltonian system[J].Mathematica Scientia,2004,24A(6):737—751.

[5]Li Yanmei.Classification of phase portraits of planar quintic Hamiltonian vector field with equivariant property[C].Proceedings of the international conference on nonlinear mechanics.Shanghai University press,2007:1534—1538.

The Phase Portraits of a type of Planar Septic Hamiltonian Vector Field with Z2-Equivariant Property*

李艷梅
( 楚雄師范學(xué)院,云南楚雄675000)

O175

A

1671-7406(2011)09-0047-04

云南省應(yīng)用基礎(chǔ)研究項(xiàng)目:2008ZC158M。

2011-06-20

李艷梅 (1966—),女,教授,主要從事非線性微分方程研究。

(責(zé)任編輯 劉洪基)

摘 要:本文給出了一類具有Z2-等變性質(zhì)的七次平面哈密頓向量場(chǎng)的全局相圖,并對(duì)參數(shù)空間進(jìn)行了劃分。

關(guān)鍵詞:七次哈密頓向量場(chǎng);Z2-等變性質(zhì);奇點(diǎn);相圖

主站蜘蛛池模板: 色欲色欲久久综合网| www.亚洲天堂| 午夜丁香婷婷| 色噜噜狠狠狠综合曰曰曰| 中文精品久久久久国产网址 | 亚洲午夜国产精品无卡| 国产无人区一区二区三区| 欧美亚洲一二三区 | 欧美v在线| 91视频99| 99人体免费视频| 国产jizz| 91综合色区亚洲熟妇p| 无码 在线 在线| 久久综合伊人 六十路| 国产精品污污在线观看网站| 天堂岛国av无码免费无禁网站| 久久精品日日躁夜夜躁欧美| 亚洲视频三级| a级免费视频| 精品偷拍一区二区| 日本高清成本人视频一区| 免费国产高清视频| 91啪在线| 综合色88| 国产地址二永久伊甸园| 久久国产V一级毛多内射| 亚洲高清资源| 老司国产精品视频| 色一情一乱一伦一区二区三区小说| 欧美色图第一页| 777午夜精品电影免费看| 日本三级欧美三级| 无码av免费不卡在线观看| 91探花国产综合在线精品| av在线手机播放| 亚洲成人播放| 国产精品页| 青青草a国产免费观看| 国产精品白浆在线播放| 国产成a人片在线播放| 久久精品只有这里有| 丁香婷婷激情网| 国产视频一区二区在线观看 | 中美日韩在线网免费毛片视频| 亚洲精品自在线拍| 九色视频线上播放| 国产靠逼视频| 日本在线视频免费| 中国国产高清免费AV片| 无码福利视频| 免费观看男人免费桶女人视频| 看国产毛片| 日韩国产精品无码一区二区三区| 欧美区国产区| 亚洲国产精品国自产拍A| 欧美区一区二区三| 亚洲精品午夜无码电影网| 久热中文字幕在线| 免费可以看的无遮挡av无码| 爱色欧美亚洲综合图区| 中国丰满人妻无码束缚啪啪| 亚洲免费三区| 欧美日韩理论| 色综合热无码热国产| 国产丰满成熟女性性满足视频| 91久久偷偷做嫩草影院电| 欧洲精品视频在线观看| 国产麻豆91网在线看| 免费人成网站在线高清| 午夜视频在线观看免费网站| 中文字幕亚洲精品2页| 99热这里只有精品免费| A级全黄试看30分钟小视频| 亚洲国产成人麻豆精品| 99精品视频九九精品| 狠狠色综合网| 影音先锋丝袜制服| 欧美一级在线播放| 国产美女主播一级成人毛片| 色天堂无毒不卡| 欧美不卡视频在线观看|