宋謀勝,晏登揚
( 銅仁學院 物理與電子科學系,貴州 銅仁 554300 )
A356合金疲勞數據的數理統計分析
宋謀勝,晏登揚
( 銅仁學院 物理與電子科學系,貴州 銅仁 554300 )
研究了不同加鈦方式和鈦含量對A356合金低周疲勞性能的影響,并重點對實驗數據進行了數理統計分析,擬合了四種合金的Manson-Confin方程,分析了實驗數據的統計可靠性與顯著性。結果表明,A356合金低周疲勞壽命對加鈦方式不敏感,其疲勞壽命僅受合金中Ti含量影響。無論電解加鈦合金還是熔配加鈦合金,Ti含量為0.1%的合金較0.14%的合金具有更優異的低周疲勞性能。
A356合金; 疲勞壽命; 擬合; 數理統計
材料的疲勞是指材料在應力或應變的交變作用下所發生的性能變化,一般情況下特指那些導致開裂或斷裂的性能變化[1][2]。實際上,疲勞斷裂一直是機械零件和工程構件破壞的最主要形式,在航空航天、化工機械、交通運輸、工程機械等領域中,約有50%~90%的結構強度破壞是由疲勞破壞造成的。由于絕大部分工程結構材料在實際服役期間承受的是交變載荷,疲勞破壞成為了構件失效的主要形式,也是影響構件服役壽命的重要因素。在交變載荷下,應力集中部位的材料循環塑性變形行為對構件的疲勞服役性能起決定性影響[3][4],因此研究材料在應變控制條件下的低周疲勞性能極具實際意義。然而,通常材料的疲勞測試是一項非常耗時耗財的繁重任務,需要投入大量的人力、物力,且所得的實驗數據極為龐雜而分散,具有很大的隨機分布性。但大量研究表明,在同一應變水平上,試樣對數疲勞壽命統計分布呈正態分布規律[5]。因此,在材料的低周疲勞測試中,有必要對非常分散、相差較大的實驗數據進行數理統計方面的分析,從而在設計選材、優化性能、疲勞壽命預測等方面獲得更多的信息,最大效果地發揮材料的潛能。
A356合金因具有優良的鑄造性能、熱處理性能、加工性能、疲勞性能以及良好的強度與塑性而被廣泛地使用在汽車、摩托車輪轂等產業中[6][7]。目前,人們對A356合金的常規力學性能研究較多,而對其疲勞性能的研究相對有限。本實驗分別采用電解加鈦和熔配加鈦兩種方式配制了兩種 Ti含量的 A356合金,在對其低周疲勞性能進行測試基礎上,利用數理統計的方法對測試數據進行了分析。
實驗材料為兩種Ti含量(0.10%, 0.14%)的電解加鈦A356合金(E10, E14)和熔配加鈦A356合金(M10, M14)。電解加鈦 A356合金直接采用 Ti含量為0.18%的電解低鈦鋁合金熔配而成,熔配加鈦A356合金則采用 Al-5%Ti中間合金和純鋁熔配而成,四種實驗合金的化學成分見表1。澆注的試樣經T6熱處理后加工成標準的疲勞測試試樣(φ8× 16),然后在MTS-810液壓伺服材料試驗機上進行低周疲勞測試。疲勞實驗名義總應變半幅分別取Δε2=0.9× 10?2,0.7× 10?2,0.5× 10?2,0.3× 10?2,0.25× 10?2
t共5個幅值,應變比R=?1。最后對疲勞實驗數據進行數理統計分析。

表1 A356合金的化學成分 (wt.%)Tab. 1 Chemical compositions of A356 alloys
在低周疲勞測試中,由于材料的應力應變已超過其彈性范圍而進入塑性區,因此實驗中的總應變半幅(Δt2)由彈性應變半幅(Δe2)和塑性應變半幅(Δp2)組成。材料的循環應變―疲勞壽命(Δε?Nf)關系是衡量和評估材料疲勞服役性能、預測材料疲勞壽命的重要參量。低周疲勞的Δε?Nf關系通常采用總應變半幅(Δt2)和循環反向次數(2Nf)在雙對數坐標上表示,即Δεt2?2Nf曲線。同理,Δεe2?2Nf和Δεp2?2Nf關系也可在雙對數坐標上表示。
圖 1顯示出了 Ti含量分別為 0.1%和 0.14%的A356合金在電解加鈦和熔配加鈦兩種方式下的循環Δt2?2Nf、Δe2?2Nf、Δp2?2Nf關系曲線。可見,無論是電解加鈦還是熔配加鈦,Ti含量為0.1%的A356合金低周疲勞壽命要優于Ti含量為0.14%的A356合金低周疲勞壽命,表明前者具有更好的抗低周疲勞性能。還可以看出,彈性應變對A356合金低周疲勞壽命的影響不明顯,而塑性應變的影響則較為明顯,因此材料的低周疲勞壽命主要取決于材料的塑性應變。

圖1 A356合金的循環應變―壽命曲線:(a)電解加鈦,(b)熔配加鈦Fig. 1 Cyclic Δ2?2Nf plots of A356 alloys
圖2顯示出了相同Ti含量下加鈦方式對材料疲勞壽命的影響。很明顯,在相同Ti含量下,兩種加鈦方式合金具有極為相近的低周疲勞壽命,表明A356合金的疲勞壽命對加鈦方式的影響不敏感。當Ti含量為0.1%時,熔配加鈦合金的低周疲勞壽命在高應變幅下略高于電解加鈦合金的。這是因為后者是采用鈦含量為0.1%的A356錠重熔而具有較粗的組織,使得疲勞性能略低,而在低應變幅下二者的疲勞壽命相當。當鈦含量為0.14%時,兩種加鈦方式合金的疲勞壽命一直保持相當。這說明實驗合金在相同的Ti含量下具有相近的循環疲勞強度與循環疲勞塑性,從而顯示相當的疲勞壽命。

圖2 A356合金的循環總應變―壽命曲線:(a)0.1%Ti,(b)0.14%TiFig. 2 Cyclic Δεt 2?2Nf plots of A356 alloys
通常,金屬材料的低周疲勞壽命Δε2?2Nf關系可用Manson-Coffin方程描述[8]:



對(5)式進行最大似然處理,可以得出A、B的最大似然估計值為:

將A、B之值代入(4)式所得的方程則為Y關于X的線性回歸方程。
利用實驗的原始數據來計算出相應的X、Y值并將其代入A、B似然估計公式中,經整理后得:

得:XY=?99.8%,|XY|較大,它表明X,Y的線性相關程度非常好。
同理可擬合出 E10、E14、M10和 M14合金相應b,c,′f,′f值,結果如表2示。由表2可見,E14、M14及E10、M10合金的疲勞強度指數b、疲勞強度系數′f相當,表明電解加鈦和熔配加鈦合金
從而有:c=?0.63,′f=24%=0.24。另由X,Y的相關系數公式:的強度相當,彈性應變對材料所造成的疲勞損傷相當,而兩種加鈦方式合金的疲勞塑性指數 c、疲勞塑性系數′f也相近,表明二者的塑性相近,塑性應變對材料所造成的疲勞損傷相近,因此兩種加鈦方式合金的疲勞壽命也相近。但是鈦含量為0.10%的合金卻具有較大的疲勞塑性指數c和疲勞塑性系數′f,較低的疲勞強度指數b和疲勞強度系數′f,這使得其在疲勞服役過程中更能緩解由于材料的塑性變形所造成的疲勞損傷,從而具有較好的低周疲勞性能。

表2 Manson-Coffin方程的參數Tab. 2 Parameters of Manson-Coffin equation

實驗時取n=5, =10%,將疲勞壽命數據代入(9)、(10)式,在t分布表中查出相應的值,從而計算出的值,μ、2Nf的置信區間,如表 3所示。
另外,由(9)式得:

在實驗中,因測試數據分散性較大,一般取=α10%, =5%。現以E10的Δεt/2=0.9%為例,代入數據,得n0=4.5,而實驗時試樣個數n=5,因此實驗數據應為可靠。
另外,還可考查合金間疲勞壽命的差異性,即材料的顯著性。因疲勞對數壽命服從正態分布,即N(μ,2),其中μ為樣品均值,σ2為樣本方差。對于X,Y兩組獨立隨機變量,設x1,x2,....,xn是來自X樣本值,y1,y2,....,yn是來自Y樣本值,這兩組數據總是成對出現。另設Z為這兩組數據之差,即Z=Y?X,z1,z2,....,zn是來自Z樣本值,則Z也滿足正態分布,于是有統計量:

表3 A356合金低周疲勞壽命的置信區間Tab. 3 Reliability region of LCF life for A356 alloys




表4 A356合金疲勞壽命的顯著性分析Tab. 4 Significance analysis of LCF life for A356 alloys
對 A356合金低周疲勞實驗數據的數理統計分析表明,加鈦方式對 A356合金低周疲勞壽命的影響不明顯,而Ti含量對低周疲勞壽命影響較大。無論是電解加鈦合金還是熔配加鈦合金,Ti含量為0.1%的 A356合金低周疲勞性能要優于 Ti含量為0.14%的。
[1] (美) Suresh S.材料的疲勞[M].王光中等,譯.北京:國防工業出版社,第2版,1999,5.
[2] Murakami Y, Miller K J. What is fatigue damage? A view point from the observation of low cycle fatigue process[J].Int J Fatigue, 2005, 27(8): 991-1005.
[3] Jian Y Y, Ott W, Baum C. Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory [J]. Int J Plast, 2009, 25(5): 780-801.
[4] Emami A R, Begum S, Chen D L. Cyclic deformation behavior of a cast aluminum alloy [J]. Mater Sci Eng A, 2009,516(1-2): 31-41.
[5] Goswami T. Low cycle fatigue life prediction, a new model[J]. Int J Fatigue, 1997, 19(2): 109-115.
[6] Miller W S, Zhuang L, Bottema J. Recent development in aluminium alloys for the automotive industry[J]. Mater Sci Eng A, 2000, 280: 37-49.
[7] 宋謀勝,冉茂武,孔園園等.A356合金低周疲勞性能及其可靠性研究[J].鑄造技術,2010,31(6):735-739.
[8] Alush H, Katz Y, Maros M B. Some insights into the remote strain versus fatigue life relationship [J]. J Mater Process Technol, 2004, 157-158: 16-22.
[9] 劉瑞堂,劉文博.工程材料力學性能[M].哈爾濱:哈爾濱工業大學出版社,2001,8.
Mathematical Statistics Analysis of Fatigue Data for A356 Alloys
SONG Mou-sheng, YAN Deng-yang
( Department of Physics and Electronics Science, Tongren University, Tongren 554300, China )
The effects of Ti-addition methods and Ti contents on the low-cycle fatigue (LCF) properties of A356 alloys were investigated, as well as the mathematical statistics analysis of the experimental data of four alloys was chiefly performed, including their fittings of Manson-Confin equations and the analysis of statistics reliability and significance. It is found that the LCF life of A356 alloys is insensitive to the Ti-addition method, and is only influenced by the Ti content in the alloys. Whether added by electrolysis or by melting Al-Ti master alloy, A356 alloys with 0.1%Ti content exhibited the better LCF properties in comparion to those of A356 alloys with 0.14%Ti content.
A356 alloys;fatigue life;fitting;mathematical statistics
(責任編輯 毛志)
TG146.2 < class="emphasis_bold">文獻標識碼:A
A
1673-9639 (2011) 04-0133-06
2011-05-03
貴州省科學技術基金項目(J20102016),銅仁學院科研基金項目(TR084)。
宋謀勝(1972-),男,湖南懷化人,博士,副教授,研究方向:材料的強化和韌化。