中圖分類號:TQ323.8 文獻(xiàn)標(biāo)志碼:A
Abstract:Fluorescent waterborne polyacrylates have significant application prospects in fluorescent anti-counterfeiting,bio-imaging,chemical sensing,and fluorescent coatings and so on, and have gradually become a research hotspot. In this study,a fluorescent functional monomer,4-O-octafluoropentyl-N-acryloylethoxy-1,8-naphthalimide (OENA),was first synthesized through sequential reactions of 4-bromo-1,8-naphthalic anhydride with ethanolamine, acryloyl chloride,and octafluoropentanol. Subsequently,a series of naphthalic anhydridebased fluorinated polyacrylate emulsions (FFAE) were prepared via semi-continuous soapfree emulsion polymerization by varying the amounts of OENA,using methyl methacrylate, butyl acrylate and dodecafluoroheptyl methacrylate as co-monomers. The molecular structure of the polymer,and the performance properties of the emulsions and latex films were systematically characterized using FT-IR spectroscopy,1 H-NMR spectroscopy,UV-vis spectrophotometry,fluorescence spectroscopy,nanoparticle size analysis,ultra-depth microscopy,tensile testing,and contact angle measurements.Results confirmed the product had the due structure.The FFAE exhibited small particle sizes and excellent stability. The incorporation of OENA endowed the FFAE emulsions with prominent fluorescence characteristics.The latex films demonstrated superior comprehensive performance,achieving a maximum static water contact angle of 1Ol.3°,tensile strength of 7.01MPa ,and elongation at break of 234% :
Key words:fluorescence; naphthalic anhydride derivatives; fluorinated polyacrylates; multi-functional
0 引言
傳統(tǒng)水性聚丙烯酸酯具有良好的成膜性、附著力和機(jī)械性能,備受關(guān)注,但也存在耐候性、耐化學(xué)性和耐水性差等缺點(diǎn)[1-3].而含氟基團(tuán)的引入能夠賦予其出色的化學(xué)穩(wěn)定性、耐熱性、耐候性和低表面能,使其在壓敏膠、防腐涂料、水性涂料、水性油墨、防火材料、織物整理、航空航天等方面得到更好地應(yīng)用[4-14].隨著科技的發(fā)展,為了更好地滿足應(yīng)用需求,具有抗菌、紫外吸收、自愈合、熒光多功能的聚丙烯酸酯相繼出現(xiàn)[15-19].其中具有熒光功能的聚丙烯酸酯在熒光防偽、生物成像、化學(xué)傳感、熒光涂層等方面有巨大的應(yīng)用前景[20-22].
熒光丙烯酸樹脂一般通過在樹脂中引入稀土離子、碳量子點(diǎn)及有機(jī)熒光染料等熒光組分制備而成.稀土礦藏有限,提純和摻雜工藝要求高,成本昂貴.量子點(diǎn)制備復(fù)雜、易氧化或聚集,一般需要保護(hù)層,其中的重金屬成分可能會造成污染.有機(jī)熒光染料則具有化學(xué)結(jié)構(gòu)易于修飾、成本低、合成工藝成熟,適合大規(guī)模應(yīng)用等優(yōu)點(diǎn),因此常作為熒光組分用于制備熒光丙烯酸樹脂.例如,Dong等23]先設(shè)計合成了三種具有碳碳雙鍵的咔唑衍生物,再與丙烯酸單體聚合制備了熒光含鋅丙烯酸樹脂并應(yīng)用于海洋防污,研究了三種咔唑衍生物對樹脂熒光性能及防污性能的影響.Hou等[24]先制備含有羥基的丙烯酸樹脂,然后與帶有羧基的香豆素衍生物反應(yīng),制備了熒光丙烯酸樹脂.1,8-萘二甲酰亞胺衍生物作為經(jīng)典熒光團(tuán)之一,具有高熒光量子產(chǎn)率和良好的光穩(wěn)定性,廣泛應(yīng)用于發(fā)光二極管、熒光探針、熒光染料、傳感器等領(lǐng)域[25-30].文獻(xiàn)[31-33]調(diào)研可知,通過在1,8-萘二甲酰亞胺衍生物引入雙鍵并和其余功能單體進(jìn)行聚合是制備萘酐類熒光聚合物常用的方法.但基于其制備水性熒光多功能丙烯酸樹酯的文獻(xiàn)報道仍相對較少.
本文通過分子結(jié)構(gòu)設(shè)計,利用4-溴-1,8-萘二甲酸酐中-Br基和酸酐反應(yīng)活性的差異,使其先后與乙醇胺、丙烯酰氯和八氟戊醇反應(yīng)制備熒光功能單體OENA,并將OENA與甲基丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸十二氟庚酯在可聚合乳化劑1-烯丙氧基-3-(4-壬基苯酚)-2-丙醇聚氧乙烯(10)醚硫酸銨(DNS-86)的作用下進(jìn)行半連續(xù)無皂乳液聚合,通過改變熒光功能單體的用量制得系列熒光水性含氟聚丙烯酸酯,并對FFAE及其膠膜的熒光性、疏水性和機(jī)械性能進(jìn)行了詳細(xì)地研究.
1實(shí)驗(yàn)部分
1. 1 試劑與儀器
1.1. 1 主要試劑
4-溴-1,8-萘二甲酸酐、丙烯酰氯,AR,上海阿拉丁生化科技股份有限公司;乙醇胺,AR,上海麥克林生化科技股份有限公司;八氟戊醇,工業(yè)品,湖北雅邁德生物醫(yī)藥;二氯甲烷、二甲基亞砜,AR,天津市大茂化學(xué)試劑廠;甲基丙烯酸甲酯(MMA),AR,福晨(天津)化學(xué)試劑有限公司;丙烯酸丁酯(BA),AR,天津市科密歐化學(xué)試劑有限公司;甲基丙烯酸十二氟庚酯(DFMA),工業(yè)品,哈爾濱雪佳氟硅化學(xué)有限公司;過硫酸銨,AR,國藥集團(tuán)化學(xué)試劑有限公司;碳酸鉀、碳酸氫鈉,AR,天津市天力化學(xué)試劑有限公司;DNS-86,工業(yè)品,廣州雙鍵貿(mào)易有限公司;鋅粉,AR,天津市大茂化學(xué)試劑廠.
1.1. 2 主要儀器
Vertex-70型傅里葉變換紅外光譜儀,德國Bruker公司;AvanceNeo6OoM型核磁共振波譜儀,瑞士Bruker公司;愛丁堡FS5熒光光譜儀,英國愛丁堡;Cary5000紫外-可見分光光度計,新加坡安捷倫;KH-8700 超景深三維顯微鏡,日本HI-ROX(浩視)公司;AI-7000-NGO伺服控制高低溫拉力試驗(yàn)機(jī),高特威爾檢測儀器中國天津;視頻光學(xué)接觸角測量儀,德國Dataphysics公司;Nano-ZS型納米激光粒度儀,英國Malvern公司.
1. 2 實(shí)驗(yàn)方法
1.2.1 4-溴-N-羥乙基-1,8-萘二甲酰亞胺(BHNA)的制備
稱取 13.85g(0.05mol)4 -溴-1,8-萘二甲酸酐和 9.16g(0.15mol) 乙醇胺加入到三口燒瓶中,用140mL 無水乙醇充分?jǐn)嚢枞芙猓郎刂?
在N2 保護(hù)下保溫反應(yīng) 6h ;減壓抽濾,收集濾餅,并用去離子水將樣品洗滌3次;然后在 80‰ 下真空干燥 12h ,獲得淺黃色粉末 13.23g (產(chǎn)率 83% ).
1.2.2 4-溴-N-丙烯酸乙酯基-1,8-萘二甲酰亞胺(BENA)的制備
稱取 9. 60g(0. 03mol) BHNA和 3. 04g ( 0.03mol? 三乙胺(TEA)加入到三口燒瓶中,用80mL 二氯甲烷(DCM)充分?jǐn)嚢枞芙猓环Q取2.72g(0.03mol) 丙烯酰氯和 15mL 二氯甲烷(DCM)混合均勻后,轉(zhuǎn)移至恒壓滴液漏斗中.在冰浴(0°C )條件下,將上述混合溶液緩慢滴加至三口燒瓶中,控制滴加速率,約 50min 滴完,再保持低溫條件反應(yīng) 4h. 反應(yīng)結(jié)束后,減壓抽濾,收集濾液,在20°C 下減壓蒸餾脫除溶劑DCM,并用去離子水洗滌產(chǎn)物3次;然后在 60°C 下真空干燥 6h ,得到淺黃色固體 10.07g (產(chǎn)率 90% .
1.2.3 熒光多功能單體OENA的制備
參考文獻(xiàn)[34]的方法進(jìn)行醚化反應(yīng),稱取11.23g(0.03mol)BENA,20.89g(0.09mol) 八氟戊醇、 4. 15g(0. 03mol) 碳酸鉀 (K2CO3 )和 0.49g (0.0 075mol) 鋅粉加入到三口燒瓶中,用 90mL 二甲基亞礬(DMSO)充分?jǐn)嚢枞芙猓郎刂?120° 并在 N2 保護(hù)下保溫反應(yīng) 10h ;減壓抽濾,收集濾液并用 100mL 去離子水稀釋,待反應(yīng)體系內(nèi)逐漸析出褐色油狀沉淀,再通過傾析法移除上層清液,將剩余物料置于 80°C 真空干燥箱中處理 6h ,最終獲得褐色固體產(chǎn)物 11.20g ,收率達(dá) 71% .單體OENA的合成反應(yīng)示意圖如圖1所示.
圖1 OENA的合成

1.2.4 熒光含氟聚丙烯酸酯乳液的合成
表1為FEAE樣品制備的主要原料配方表按表1中的數(shù)據(jù),在一定量的可聚合乳化劑DNS
86溶液中,分別加人核單體(BA和OENA)、殼單體(MMA、BA和DFMA),用均質(zhì)乳化機(jī)高速攪拌預(yù)乳化 30min ,即得到核單體和殼單體預(yù)乳液.再在裝有攪拌器、冷凝裝置和滴液漏斗的 100mL 的三口燒瓶中依次加人乳化劑DNS-86溶液、1/3引發(fā)劑水溶液和1/2核單體預(yù)乳化液,充分?jǐn)嚢璨Ⅲw系升溫至
,使種子發(fā)生聚合反應(yīng),當(dāng)體系出現(xiàn)藍(lán)色熒光時繼續(xù)反應(yīng) 30min ,再分別向反應(yīng)體系中同時滴加入剩余的 1/3 引發(fā)劑水溶液及核單體預(yù)乳液,滴加時間控制為 0.5~1h ,滴加結(jié)束后再保溫反應(yīng) 1h 在上述乳液中分別再同時滴加剩余的 1/3 引發(fā)劑水溶液及殼單體預(yù)乳化液,控制時間約 0.5~1h 滴加完畢,然后保溫反應(yīng)3~4 h.最后,降至室溫,用 NaHCO3 溶液調(diào)節(jié)pH=7 左右,過濾,出料,即得熒光含氟聚丙烯酸酯乳液,記作FFAE.整個反應(yīng)示意圖如圖2所示.
表1FFAE樣品制備的主要原料配方表

圖2 FEAE的合成

1.2.5熒光含氟聚丙烯酸酯膠膜的制備取適量FFAE倒入聚四氟乙烯模具中,用流平法制膜,自然晾干后,依次用去離子水、乙醇和丙酮沖洗除雜,再經(jīng)真空干燥,備用.
1.3表征與測試
1.3.1 FT-IR 測試
用Vector-7O型傅里葉變換紅外光譜儀對 BHNA、BENA、OENA及膠膜進(jìn)行測試,掃描范 圍 4000~500cm-1 ,掃描次數(shù)32.
1.3.2 (204號 1H -NMR測試
用氘代氯仿( CDCl3 )將 5mg FFAE-1乳膠膜溶解,使用核磁共振波譜儀進(jìn)行 1H -NMR測試.
1.3.3 UV-vis 測試
用二甲基亞礬配制 20mg/L 的OENA溶液.取 5uL 乳液用 5mL 去離子水稀釋.采用Cary5000型 紫外-可見-近紅外分光光度計在 λ 為 200~800nm 內(nèi)對樣品進(jìn)行光譜掃描,
1.3.4 熒光光譜分析
取 5uL 乳液用 5mL 丙酮稀釋.用FS5型熒 光光譜儀對樣品的熒光強(qiáng)度進(jìn)行測定.
1.3.5 FEAE膠膜形貌觀測
采用KH-8700超景深三維顯微鏡,在1500放大倍數(shù)下觀察FFAE-O、FFAE-O.4、FFAE-O.8、FFAE-1膠膜樣品的形貌.
1.3.6 乳液粒徑及穩(wěn)定性的測試
取適量熒光含氟聚丙烯酸酯乳液,用去離子水稀釋100倍,超聲分散 15min 后,用納米激光粒度儀對乳液粒徑進(jìn)行測試. 15mL 離心管中加入FFAE,高速離心機(jī)轉(zhuǎn)速為 3000r/min ,離心轉(zhuǎn)動10min ,觀察乳液有無沉淀.
1.3.7 WCA測試
用視頻光學(xué)接觸角測量儀對膠膜進(jìn)行測試,每個樣品測量5次,結(jié)果取平均值,所用介質(zhì)為蒸餾水,液滴大小 5uL
1.3.8力學(xué)性能測試
傳感器 500kgf ,以 100mm/min 的拉伸速率對膠膜的拉伸強(qiáng)度和斷裂伸長率進(jìn)行測定.
2 結(jié)果與討論
2.1 結(jié)構(gòu)表征
2.1.1 FT-IR分析
中間體、熒光單體及聚合物的FT-IR圖如圖3所示.從圖3可見,BHNA中 3 391cm-1 , .1 230cm-1 和1050cm-1 處分別為一OH的伸縮振動吸收峰和彎曲振動吸收峰及 c-o 伸縮振動吸收峰, .1 700cm-1 和1660cm-1 處為萘二甲酰胺 C=O 伸縮振動吸收峰,1579cm-1 和 782cm-1 處分別為芳環(huán)骨架振動吸收峰和 C-H 彎曲振動吸收峰, 666cm-1 處為 C-Br 伸縮振動峰, 1 366cm-1 處為亞甲基 -C-H 彎曲振動吸收峰.而 BENA 中 3391cm-1 和 1 230cm-1 處的吸收峰消失, 1192cm-1 和 1 015cm-1 處新出現(xiàn)的峰為C一O一C的不對稱和對稱伸縮振動吸收峰, 981cm-1 處為 -CH=CH2 的面外彎曲振動吸收峰.除此以外,OENA 中 C-Br 伸縮振動峰消失, 1 244cm-1 和714cm-1 處為一 CF2 一的伸縮振動吸收峰與彎曲振動吸收峰帶[12].而在FFAE-1中, 1670~1620cm-1 處的 -CH=CH2 伸縮振動峰消失, 1300~1100cm-1 處的吸收峰變強(qiáng)變寬,是由于 -C-F 引入量增加,它們在此處的吸收峰與 c-o 的伸縮振動吸收峰重疊所致.上述結(jié)果表明,本文成功合成了熒光單體OE-NA及其萘酐基含氟聚丙烯酸酯.
圖3 熒光單體、中間體和聚合物的紅外光譜圖2.1.2 (20 1H? -NMR分析

圖4為FFAE-1乳膠膜的核磁共振氫譜.由圖4可知,聚合物上各氫化學(xué)位移值均顯現(xiàn)在譜圖中,而丙烯酸酯單體上的不飽和氫常見位移值 δ= 5.9、6.09及 6.22ppm 并未出現(xiàn),表明BA、MMA、DFMA及OENA已成功參與聚合,制得了萘酐基含氟聚丙烯酸酯.
圖4聚合物FEAE-1的核磁共振氫譜

2.2 熒光性能
圖5和圖6分別為OENA及不同OENA引入量的FEAE的紫外吸收光譜.由圖5和圖6可知,除FEAE-O外,OENA及FEAE在λ為 340nm 附近均有紫外吸收峰(對應(yīng)于萘酰亞胺共軛體系的 π-π? 電子躍遷),表明OENA的成功引入.隨著熒光單體OENA含量的增加,F(xiàn)EAE在 340nm 處的紫外吸收顯著增強(qiáng),主要源于改性含氟聚丙烯酸酯乳液中萘酰亞胺基團(tuán)的濃度依賴性紫外吸收行為.
圖5OENA的紫外吸收光譜

圖6不同F(xiàn)EAE的紫外吸收光譜

圖7和圖8分別為FEAE-1的熒光激發(fā)光譜和不同F(xiàn)EAE的熒光發(fā)射光譜.由圖7和圖8可見,F(xiàn)EAE-1的熒光激發(fā)光譜最大吸收峰位于340nm ,除FEAE-O外,其余FEAE在 420nm 附近均出現(xiàn)寬熒光發(fā)射峰,斯托克斯位移為 80nm 較大的斯托克斯位移在光譜上表現(xiàn)為激發(fā)峰與發(fā)射峰明顯分離,這有助于消除背景激發(fā)光對檢測的影響,提高檢測靈敏性并降低信號串?dāng)_,在分析檢測領(lǐng)域具有良好的應(yīng)用前景[35].不同F(xiàn)EAE的熒光發(fā)射光譜表明熒光發(fā)色團(tuán)在聚合過程中沒有改變它們的化學(xué)結(jié)構(gòu),并且隨著熒光單體OENA引入量的增加,F(xiàn)EAE在 420nm 處的熒光發(fā)射光譜逐漸增強(qiáng),在實(shí)驗(yàn)濃度范圍內(nèi)未發(fā)生顯著聚集誘導(dǎo)猝滅(ACQ)現(xiàn)象,這可能歸因于FEAE鏈的空間位阻阻礙了熒光團(tuán)之間的ACQ效應(yīng),從而增加了熒光量子產(chǎn)率[36].
圖7FFAE-1的熒光激發(fā)光譜

圖8不同F(xiàn)EAE的熒光發(fā)射光譜

圖9為FEAE-1乳液經(jīng)鏤空模板噴涂于紙表面固化后分別在可見光及 365nm 紫外燈照射下的光學(xué)照片.由圖9可以明顯地看出,在可見光下幾乎看不到有顏色的字;而在紫外燈照射下則明顯可看到藍(lán)綠光的字體.上述結(jié)果說明,OENA的引入可賦予FFAE較好的熒光性.
圖9 FEAE-1乳液處理紙的光學(xué)照片

2.3 乳液性能分析
圖10及表2分別為FEAE的乳液粒徑圖和乳液穩(wěn)定性表.由圖10結(jié)果可知,F(xiàn)EAE的乳液粒徑主要集中在 15~122nm ,多數(shù)集中在 30~ 40nm ,乳液粒徑小且分布較窄;由表2可知,經(jīng)高速離心后各乳液均未出現(xiàn)沉淀,表明乳液穩(wěn)定性良好.
圖10 乳液粒徑分布圖

表2FFAE樣品的穩(wěn)定性

2.4 膠膜性能
圖11為FEAE-O、FEAE-O.4、FEAE-O.8及FEAE-1乳膠膜經(jīng)超景深顯微鏡觀察拍照后的照片.由圖11可發(fā)現(xiàn),隨著OENA引入量的增加,膜表面的顏色逐漸加深,這與熒光單體本身的顏色有關(guān);而在3D圖中可發(fā)現(xiàn),隨著OENA引入量的增加,膜粗糙度增加,這是由于熒光單體分子結(jié)構(gòu)中含有較大剛性的萘環(huán),它與其余部分微相分離所造成的,引入量越多,微相分離程度越大,膜越粗糙.
圖11乳膠膜的超景深顯微鏡測試圖
圖12為膠膜表面的靜態(tài)水接觸角變化圖.

由圖12可知,隨著OENA引人量的增加,膠膜表面的靜態(tài)水接觸角逐漸從90.5°增大至101.3°,而且當(dāng)OENA的引人量超過 0.4g 后,膠膜表面的靜態(tài)水接觸角的增加才較快,最高可達(dá)101.3°.分析本研究FEAE的配方可知,相對疏水單體DF-MA的用量,OENA的用量要少很多;也即OENA對FEAE膠膜疏水性的作用主要體現(xiàn)在對膜粗糙度的提升方面,由前述研究可知隨OENA引入量增加,膜粗糙度增大;據(jù)Wenzl方程 cosθrw= rcosθc[37] ,疏水膜表面越粗糙,則靜態(tài)水接觸角越大.
圖12膠膜表面的靜態(tài)水接觸角變化

圖13為乳膠膜的應(yīng)力-應(yīng)變曲線.由圖13可知,未添加OENA的膠膜抗張強(qiáng)度為 1. 58MPa 斷裂伸長率為 296% ;隨著OENA添加量增加,膠膜的抗張強(qiáng)度增大,斷裂伸長率下降.FEAE-1的抗張強(qiáng)度可達(dá) 7. 01MPa ,斷裂伸長率為 234% ,具有較好的機(jī)械性能.這主要?dú)w因于剛性O(shè)ENA的加入,其在聚合物鏈中起鉚合或交聯(lián)作用.隨著OENA用量的增加,導(dǎo)致膜抗張強(qiáng)度增大,延伸性下降.
圖13乳膠膜的應(yīng)力-應(yīng)變曲線

3結(jié)論
(1)本文通過分子結(jié)構(gòu)設(shè)計先制得一種熒光單體OENA,再將OENA與甲基丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸十二氟庚酯進(jìn)行半連續(xù)無皂乳液聚合制得系列萘酐基含氟聚丙烯酸酯乳液.FT-IR和1H-NMR結(jié)果證實(shí)產(chǎn)物具有預(yù)期結(jié)構(gòu).
(2)FFAE粒徑較小,乳液穩(wěn)定性好.OENA的引入可賦予FFAE較好的熒光性.乳膠膜表面水靜態(tài)接觸角最大可達(dá)101.3°,拉伸強(qiáng)度達(dá)到7.01MPa ,斷裂伸長率為 234% ,綜合性能優(yōu)異,在熒光涂料、織物整理、熒光防偽等領(lǐng)域具有廣闊的應(yīng)用前景.
參考文獻(xiàn)
[1] Zhang C,Xu T,Bao Z,et al. Synthesis and characterization ofpolyacrylate latex containing fluorine and silicon via semi-continuous seeded emulsion polymerization[J].Journal of Adhesion Science and Technology,2017,31(15): 1 658-1 670.
[2] Zhang Q,Wu M. Preparation of fluorinated polysiloxane and its application in modified polyacrylates[J]. Journal of Applied Polymer Science,2024,141(28):e55642.
[3] Li S,Gong Z,Chen L. Study on preparing novel crosslinked and fluorinated acrylate latex[J].Polymer Bulletin, 2024,81:9 813-9 830.
[4] Chen L,Shi H,Wu H,et al.Study on the double fluorinated modification of the acrylate latex[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010, 368(1-3):148-153.
[5]Erdogan M,Ozkinali S,Mert H.A novel fluorinated monomer:Synthesis,characterization and ATRP of 5,6,7,8 1 tetrafluoronaphthalen-1-yl acrylate[J].Journal of Fluorine Chemistry,2021,242:109 718.
[6].Fang C,Wu C,Zhao X,et al.Fabrication of core-shell polyacrylate latex pressure sensitive adhesives modified by fluorinated monomer and film properties[J]. International Journal of Adhesion and Adhesives,2024,132:103 714
[7] Zhou J,Li Y,Li H,et al. Cellulose nanocrystals/fluorinated polyacrylate soap-free emulsion prepared via RAFTassisted Pickering emulsion polymerization[J].Colloids and Surfaces B:Biointerfaces,2019,177:321-328.
[8] Zhang C,Xu T,Bao Z,et al.Synthesis and characterization of fluorinated polyacrylate latex emulsified with novel surfactants[J].Designed Monomers and Polymers,2017,20 (1):118-124.
[9] Sui Z,Guo Z,Li Y,et al. Research on nano-ZnO/fluorine polyacrylate linen fabric finishing agent[J].Journal of Natural Fibers,2024,21(1):2 320 601.
[10] Zhou J,Chen X,Duan H,et al. Synthesis and characterization of nano-SiC )2 modified fluorine-containing polyacence,2015,331:504-511.
[11] Zhou J,Wang L,Zha X,et al. Synthesis of Ag/fluorinecontaining polyacrylate latex stabilized by Ag nanoparticle hybrid amphiphilic random copolymer micelles via Pickering emulsion polymerization and its application on fabric finishing[J].Applied Surface Science,2020,27 (15):9 123-9 134.
[12]許偉,劉浩,張博文,等.新型含剛性環(huán)己烷結(jié)構(gòu)的氟 代丙烯酸酯的制備及其性能研究[J].學(xué) 報,2023,41(6):68-74.
[13]喻燕娟,曹毅,邱堪輝.含氟丙烯酸酯聚合物結(jié)構(gòu)對性 能的影響分析[J].化工生產(chǎn)與技術(shù),2024,30(2):7- 11,43.
[14]孫中新,孫立巖,李繼航.含氟單體改性丙烯酸樹脂的合 成及性能研究[J].山東化工,2024,53(11):28-32.
[15] Lei H,Zhou L,Chen Z,et al. Weathering modification of acrylic emulsion by introducing UV absorbing groups [J].Journal of Applied Polymer Science,2021,138(20): 50 454.
[16] Chen Z,Wang Q,Zhang Z,et al. Preparation and properties of antibacterial fluorinated acrylic emulsion[J]. Reactive amp;. Functional Polymers,2021,163:104 901.
[17] Li H,Zhou J,Yu J,et al. Light-activated celllose nanocrystals/fluorinated polyacrylate-based waterborne coating:Facile preparation,mechanical and self-healing behavior[J]. International Journal of Biological Macromolecules,2023,249:126 062.
[18]馮見艷,王園園,王學(xué)川.姜黃素基水性聚丙烯酸酯的制 備及其熒光、力學(xué)性能[J].學(xué)報,2020,38 (5):11-16,25.
[19]周建華,袁敬,李燕.自修復(fù)纖維素納米晶改性含氟 聚丙烯酸酯無皂乳液的制備和性能[J].印染,2023,49 (12):18-21.
[20] Wang X,Zhou Z,Yu X,et al. Study on a novel fluorescent anti-counterfeiting acrylate pressure-sensitive adhesive[J]. The Journal of Adhesion,2022,98(9):1 151- 1 167.
[21] Huang Z,Chen Y,Wang R,et al. An acrylate AIE-active dye with a two-photon fluorescent switch for fluorescent nanoparticles by RAFT polymerization:Synthesis,molecular structure and application in cell imaging[J].RSC Advances,2020,10(10):5 704-5 711.
[22] Chua M H,Chin K L O,Ang S J,et al. Aggregation induced emission(AIE)-active poly(acrylates) for electrofluorochromic detection of nitroaromatic compounds [J].Chem Photo Chem,2022,6(11):e202 200 168.
[23] Dong W,Wang Y,Li X,et al. Synthesis and marine antifouling properties of carbazole amide derivatives with fluorescent properties and their zinc acrylate resins[J]. Chemical Engineering Journal,2024,502:158 017.
[24] Hou J,Hao X,Xu J,et al. Fluorescent zinc acrylate resins containing coumarin structures with enhanced antifouling performance[J]. Progress in Organic Coatings,2024, 194:108 597.
[25]DongHQ,WeiTB,MaXQ,etal.1,8-naphthalimidebased fluorescent chemosensors:Recent advances and perspectives[J].Journal of Materials Chemistry C,2020, 8(39):13 501-13 529.
[26]LeslieKG,JacqueminD,NewEJ,etal.Expanding the breadth of 4-amino-1,8-naphthalimide photophysical properties through substitution of the naphthalimide core [J].Chemistry:A European Journal,2018,24(21):5 569-5573.
[27]Zhao CS,Liu XL,YangM,etal.Thepreparationofcopolymerized fluorescent microspheres of styrene using detergent-free emulsion polymerization[J].Dyes and Pigments,2009,82(2):134-141.
[28]Zou G Y,Guo L,Chen S,et al.Multifunctional ratiometric fluorescent sensing platform constructed by grafting various response groups on carbon dots with bromine active site for biosensing and bioimaging[J].Sensors and ActuatorsB:Chemical,2022,357:131 376.
[29] Zhou R Z,Zhang Y,Gao JF,et al. Chiral fluorescent liquid crystal polymers containing 4-bromo-1,8-naphthalimide-synthesis and properties[J]. Liquid Crystals, 2024,51(5):826-840.
[30]Yu H,Guo Y,Zhu W,et al.Recent advances in 1,8- naphthalimide-based small-molecule fluorescent probes for organelles imaging and tracking in living cells[J]. Coordination ChemistryReviews,2021,444:214019.
[31]XuL,Zou L,Chen H,et al.Room-temperature phospho rescence of cucurbit[7]uril recognized naphthalimide derivative[J].DyesandPigments,2017,142:300-305.
[32]Zhang T,Wu Y,Ma X.Tunable multicolor room-temperature phosphorescence including white-light emission from amorphous copolymers[J].Chemical Engineering Journal,2021,412:128 689.
[33]裴婧,張光華,郭明媛.1,8-萘酰亞胺水性熒光聚合物 的合成及在高得率漿上的應(yīng)用[J].高分子材料科學(xué)與工 程,2019,35(6):16-22.
[34]Paul S,Gupta M. Zinc-catalyzed Williamson ether synthesis in the absence of base[J].Tetrahedron Letters, 2004,45(48):8 825-8 829.
[35]白佳坤,徐婷,張璐,等.一種大斯托克斯位移的紅光 發(fā)射熒光探針選擇性檢測次氯酸[J].無機(jī)化學(xué)學(xué)報, 2024,40(6):1 095-1 104.
[36]LiBT,Shao W,WangYZ,etal.Synthesisand morpho logical control of biocompatible fluorescent/magnetic janus nanoparticles based on the self-assembly of fluorescent polyurethane and Fe3O4 nanoparticles[J].Polymers,2019,11(2):272.
[37]GlenM,RodrigoLA,Chiara N.Cassie'slaw reformulat ed:Composite surfaces from superspreading to superhydrophobic[J].Langmuir,2023,39(31),11028-11035.
【責(zé)任編輯:蔣亞儒】
u(上接第113頁)
[22]Wei J,Jia S,WeiJ,etal.Toughand multifunctional com posite film actuators based on cellulose nanofibers toward smartwearables[J].ACS Applied Materialsamp;Interfaces,2021,13(32):38700-38711.
[23]SouzaVGL,PiresJR,Vieira ET,etal.Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil:From in vitro assays to application in fresh poultry meat[J].Food Hydrocolloids, 2019,89:241-252.
[24] Xiong C,Dang W,Yang Q,et al. Integrated ink printing paperbased self-powered electrochemical multimodal biosensing(IFP-Multi)with ChatGPT-bioelectronic interfacefor personalized healthcare management[J].Advanced Science,2024,11(11):2305 962.
[25]Xiong C,YangQ,Dang W,et al. A multifunctional paperbased supercapacitor with excellent temperature adaptability,plasticity,tensile strength,self-healing,and high thermoelectric effects[J]. Journal of Materials Chemistry A,2023,11(9):4769-4779.
[26]Baigorri R,Garcia MinaJM,González Gaitano G.Supramolecularassociation induced by Fe(III) in low molecularweight sodium polyacrylate[J].Colloidsand Surfaces A:Physicochemical and Engineering Aspects,2oo7,292 (2-3):212-216.
[27]Tian Z,Tian L,Shi M,etal.Investigation of the interaction of apolyamine-modified flavonoidwith bovine serum albumin(BSA)by spectroscopic methods and molecular simulation[J].Journal of Photochemistryand PhotobiologyB:Biology,2020,209:111917.
[28]Chen Z,Gao B,Li P,et al.Multistimuli-responsive actuatorsderived from natural materials for entirely biodegradable and programmable untethered soft robots[J]. ACS Nano,2023,17(22):23 032-23 045.
[29]ZhuJ,ZhuP,YeY,etal.Recyclablechitosan-modified cellulose fiber porous structure for sensitive and robust moisture-driven actuators and automatic cooling textiles [J].NanoLetters,2024,24(44):14 073-14081.
[30]ChenM,F(xiàn)rueh J,WangD,etal.Polybenzoxazole nanofiber-reinforced moisture-responsive soft actuators[J].ScientificReports,2017,7(1):769.
[31]LinS,Ma S,ChenK,etal.Ahumidity-driven filmwith fast response and continuous rolling locomotion[J]. Chemical EngineeringJournal,2024,495:153294.
【責(zé)任編輯:蔣亞儒】