999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

磨粒幾何學建模方法與應用研究進展

2025-11-11 00:00:00彭飛張彥彬張汝康崔歆徐培明董蘭張效天宋學磊李長河
金剛石與磨料磨具工程 2025年4期

關鍵詞磨粒幾何學建模;游離磨料;固結磨料;磨粒可控制備;磨粒整形

中圖分類號TG580.6文獻標志碼A

文章編號 1006-852X(2025)04-0427-21

DOI碼 10.13394/j.cnki.jgszz.2024.0165

收稿日期 2024-10-16 修回日期2025-01-07

磨粒加工是利用磨粒去除材料以獲得高質量、高精度零件的工藝方法,廣泛應用于航空航天、電子器件等領域[1-4]。磨粒加工主要分為游離磨粒加工和固結磨粒加工兩大類。固結磨粒加工是利用砂輪表面的磨粒實現滑擦、耕犁及切削作用,如砂輪磨削和砂帶磨削;而游離磨粒加工則是采用自由磨粒去除工件表面材料,如研磨和拋光。相比于固結磨粒加工,游離磨粒加工雖然效率較低,但可獲得極高的表面精度和表面質量[57]。磨粒幾何形狀的復雜性使得加工質量的精確控制成為難題[8-10],尤其是在精密制造和智能制造領域,磨粒形狀的定向設計與優化已成為提升加工效率、精度和表面質量的關鍵因素之一[1-13]

磨粒形狀不僅影響磨削過程中的力、熱和磨削軌跡,還直接決定工件的最終加工質量[14-17]。對磨粒形狀進行精準建模,并基于模型預測和優化磨削過程,是提升生產效率與降低運營成本的關鍵策略[1-19]。從傳統基于經驗的設計方法,到現代基于磨粒成形過程的模擬技術,磨粒形狀建模正向更精確、更高效的方向發展。建模過程不僅涉及材料的微觀結構,還需考慮磨削過程中磨粒與工件的相互作用[20-21]。基于此,學者們開發了適用于特定加工場景的磨粒形狀可控制備方法,以實現更精細和高效的加工過程。

首先以“abrasivemodeling”和“磨粒”等為檢索詞,對磨粒幾何學建模的研究熱點和影響因素進行分析;其次,綜述了4種常見磨粒形狀的建模方法;再次,總結了磨粒幾何學建模在游離磨粒和固結磨粒加工中對力、熱、材料去除率和表面粗糙度等的影響及其應用,并綜述了磨粒形狀可控制備和磨具整形方法的研究進展;最后,對磨粒幾何學建模領域的發展進行了展望。

1磨粒幾何學建模研究熱點

為深人探討磨粒幾何學建模的最新研究進展,本文以中國知網(CNKI)和WebofScience等數據庫為基礎,利用Excel、EndNote和VOSviewer等工具,對2014~2024 年間磨粒幾何學建模相關的中英文文獻進行定量分析。以“磨粒”“磨粒形狀”“磨粒建模”“ab-rasive modeling”“abrasive shape”為關鍵詞,系統分析了發展趨勢、作者分布、關鍵影響因素等。

圖1a展示了近十年磨粒幾何學建模相關論文的發表趨勢,柱形圖代表 2014~2024 年(截至2024年7月)穩步增長的每年論文數量。如圖1a所示,自2014年以來每年發表的論文數量呈穩定增長趨勢,表明隨著科學技術的發展和磨粒可控制備需求的提升,越來越多的學者進入該領域。在WebofScience中,以“abrasivemodeling”為關鍵詞共檢索到896篇文獻,其中高被引文獻8篇、熱點論文1篇。WebofScience關鍵詞熱點圖如圖1b所示,圖中節點大小反映研究頻率(節點越大,研究頻率越高),顏色表示不同關聯術語類別。由圖1b可知,磨粒幾何學建模與磨削、磨削力、粗糙度等關鍵詞聯系緊密,是該領域研究的重要組成部分。

在中國知網以“磨粒”為檢索詞,利用可視化分析工具對關鍵詞、期刊、作者、機構進行統計分析,結果如圖2所示。出現頻次最高的關鍵詞包括:磨粒磨損( 17.99% )、耐磨性( 10.92% )、cBN( 10.44% )、金剛石( 10.10% )等。其中,《金剛石與磨料磨具工程》的發文量占所有期刊的 26.34% ,是磨粒幾何學建模研究的重要期刊。作者分析顯示,徐西鵬、傅玉燦、計時鳴等教授團隊對磨粒及其建模的研究較為深入,占總發文量的1/3以上。機構方面,南京航空航天大學、浙江工業大學等共發表685篇文章,占總數的 34.93% ○

根據以上分析可知,磨粒幾何學建模廣泛應用于平面磨削、砂帶磨削、超聲輔助磨削等技術,對磨削力、磨削熱、表面形貌創成等加工性能和工藝參數影響顯著,同時也是影響鈦合金、玻璃、陶瓷等難加工材料加工性能的關鍵因素。此外,磨粒制備及其使用后的磨損形貌表征都是加工過程的重要階段。因此,本文從磨粒幾何學建模方法、加工過程的影響機制和磨粒可控制備與整形3個方面進行綜述。

2磨粒幾何學建模方法

磨粒作為精密加工的基本單元,在磨削建模中起著重要作用。磨粒的幾何特征(如形狀、尺寸和排列方式)直接影響材料去除率、表面粗糙度和加工精度等性能指標,因此建立精確的磨粒幾何學模型不僅可以優化加工參數,還可預測和控制加工效果。磨粒幾何學模型不僅有助于揭示磨粒的作用機制,還能為設計新型磨粒和改進加工技術提供理論基礎。在現有研究中,磨粒的形狀通常被簡化為球形、圓錐形、臺形、截角多面體等規則的幾何模型[22-24]。然而,實際磨粒多為不規則多面體,這種簡化可能無法準確反映磨粒的真實作用機制。因此,有學者在現有研究的基礎上,提出了隨機平面切割法[25]。這種方法通過隨機生成不規則平面切割規則幾何體來模擬真實磨粒形狀,為磨削過程的深入研究提供了新思路。常見磨粒幾何學建模方法總結見圖3與表1。

2.1球形磨粒

球形磨粒[23-24.26-27]沒有切削刃,只有一個球形接觸

"
"
"
"

面,其幾何形狀由半徑 R 單一參數決定。如圖3a所示,球形磨粒通過與工件相互擠壓實現材料去除。球形磨粒模型可以表征表面光滑磨粒的特性,但與實際磨粒形狀仍存在差異。在探究磨削機理的過程中,采用球形磨粒模型能減少不規則形狀磨粒間的相互影響,從而獲得更可靠的優化結果。已有學者應用彈性力學理論、ANSYS仿真以及虛擬現實技術,建立了球形磨粒半徑 R 的求解模型。

2.2 錐形磨粒

錐形磨粒一般分為圓錐形磨粒[23.28-34]和棱錐形磨粒[2,35-36],如圖3b 和圖3c所示。與球形磨粒相比,圓錐形磨粒具有更優的切削性能、更大的切削深度、更好的自適應性、更長的使用壽命和更高的表面質量,其材料去除模型如圖4a所示。棱錐形磨粒是具有金字塔幾何結構的磨粒(圖4b~圖4c),可以將磨削力集中于一個較小的接觸區域,從而提供更高的切削力和材料去除率。棱錐形磨粒的尖銳頂點能夠穿透工件表面,而側棱則負責切割和磨削材料。HUANG等[3研究了砂帶磨削中圓錐形磨粒對磨削力、材料去除率和表面完整性的影響。張彥彬[33采用錐角為 120° 的圓錐形磨粒表征金剛石磨粒,并通過掃描電鏡進行了觀察。

圖4錐形磨粒[23]Fig.4 Conical abrasive particles[23]

2.3 臺形磨粒

臺形磨粒[37-39,4-45]又分為圓臺形磨粒和棱臺形磨粒兩類,如圖3d和圖3e所示。臺形磨粒是考慮錐形磨粒在砂輪修整和研磨過程中的磨損后形成的。磨削過程中,砂輪與工件的接觸摩擦會導致砂輪表面磨粒逐漸磨損。為保證砂輪表面的平整度和幾何精度,通過修整形成臺形磨粒。這種形態有利于增大砂輪與工件間的摩擦力和磨削力,從而提高磨削效果。LI等[選用砂輪銳度為 2% 、夾角為 60° 的截錐體磨粒,建立了隨機砂輪形貌和磨粒-工件瞬時接觸的磨削力模型。LIU等[3研究了尖端呈圓角的圓臺形磨粒在高效深磨中的材料去除模型。

2.4 多面體磨粒

2.4.1 規則多面體

截角八面體磨粒[40-41,46-48]屬于規則多面體磨粒,由正六面體切去6個頂點得到,具有8個正六邊形和6個正方形表面(圖3f),常用于模擬金剛石磨粒。截角八面體磨粒與工件的接觸區域為局部平面,磨粒切削刃較為鈍化,導致磨削過程中磨削力顯著增大。這類經過簡化處理的磨粒形狀更接近真實的磨粒形態,使模擬結果可以更準確地反映實際磨削加工情況。劉偉[41]基于實測金剛石磨粒形貌,建立了截角八面體磨粒模型。余劍武等4采用形狀近似多棱錐頂尖的不規則多面體cBN磨粒,研究了合金鋼20CrMo的單顆磨粒高速磨削。RUTTIMANN等4使用SPH方法模擬了單顆截角八面體金剛石磨粒的切削行為。

2.4.2 不規則多面體

現有研究多采用球形、錐形和臺形等規則幾何形狀表征磨粒,但實際磨粒多為不規則形狀。因此,有學者提出通過隨機平面切割規則幾何體形成單顆磨粒的建模方法[42-43,49]。鄧瑋[42]采用在球坐標中切割球體的方法建立虛擬多面體磨粒模型(圖5a),通過控制切割平面數量調整多面體側面數量。在考慮實際磨粒的尖銳程度時,需選擇合適的切割次數N:增加切割次數會使磨粒變得更尖銳,但切割次數過多會使磨粒形狀接近球形;磨粒初始平面為40或50時,所得磨粒形貌最接近真實的單顆多面體磨粒。切割球體形成的磨粒具有真實多面體磨粒形狀不規則且尖銳的幾何特性。宿崇等[43]采用隨機空間平面切割正六面體的方法生成多面體磨粒,其形成過程的二維簡圖如圖5b所示。

圖5隨機平面切割磨粒建模[42-43]

Fig.5Modeling of random plane cutting abrasive particlel42-4:

綜上所述,在磨粒流加工(表面光整加工)的磨削機制研究中,假設磨粒為球形可有效避免不規則形狀磨粒間的相互影響,獲得更可靠的研究結果。錐形磨粒模型通過簡化形狀保留了實際磨粒的負前角切削刃特性,其錐頂角隨著磨削進程逐漸增大。臺形磨粒作為錐形磨粒經砂輪修整及磨損后的形態,不僅能體現砂輪表面的平整度與幾何精度,還可準確地反映磨削質量的變化趨勢。在多面體磨粒中,規則多面體磨粒與工件材料接觸的是局部平面區域,磨粒切削刃較鈍,因此磨削過程中的磨削力較大;而不規則多面體磨粒則在一定程度上更接近磨粒的真實形貌,進一步提升了磨粒模型的仿真精度。

3磨粒幾何學建模應用

目前,磨粒加工可分為固結磨粒加工和游離磨粒加工兩大類[50-51],兩種磨粒的對比見表2。

固結磨粒加工通過固定離散磨粒,使其在加工過程中的運動路徑有序可控,從而減少對研磨液的需求。在實際應用中,可根據工件的具體加工要求制備含有不同磨粒的砂輪或研磨盤。這些工具表面的磨粒類似刀具產生切削作用,從而實現材料的精確去除。根據結合劑的不同,固結磨粒主要分為金屬基、陶瓷基以及樹脂基等[52-54]

游離磨粒加工是利用自由磨粒去除工件表面材料的加工方法,主要包括研磨和拋光。相比固結磨粒加工,游離磨粒加工雖然效率較低,但可獲得更高的表面質量。隨著現代科技的發展,磨粒流加工、磁流變拋光、彈性發射加工等新型加工方法不斷涌現,加工對象也從金屬、玻璃等傳統材料擴展到光學元件、功能陶瓷以及半導體材料等[55-58]。

3.1游離磨粒加工

常用的游離磨粒加工設備如圖6a所示[5s]。加工過程中,工件與研具的相對運動使游離磨粒隨加工液進入加工區域,在載荷作用下,工件表面發生塑性變形或脆性斷裂,從而實現材料去除,隨后磨粒和碎屑隨加工液排出。由于新磨粒持續進入加工區域,磨粒磨損影響較小,材料去除過程較穩定。游離磨粒加工的材料去除分為二體去除和三體去除(圖6b),其微觀形貌與材料去除機理如圖6c~圖6d所示。二體去除是指磨粒剛性地附著在研具表面,通過磨粒直接切削工件表面去除材料的方式;三體去除是通過磨粒-工件和磨粒-磨粒的相互作用去除工件表面材料,可分為滑動去除和滾動去除[55]。

3.1.1 加工力建模

游離磨粒加工(磨粒流加工)的加工力模型基于磨粒前后載體的壓力差及磨粒對工件的沖擊載荷構建,通常為瞬態模型。表3總結了游離磨粒加工中常見的加工力模型。由于磨粒幾何形狀各異,其與工件的接

"
"

觸面積及產生的沖擊載荷相應變化。王時英等[5基于磨粒流加工的力學特性,指出磨粒的切削力來源于載體的壓力差和正壓力,并根據正壓力與徑向力的關系式,提出流體磨粒的黏彈性是影響加工的關鍵因素。GORANA等[60-61]建立了磨粒流單顆粒受力理論模型,并設計了測量加工過程中磨粒所受徑向力與軸向力的裝置。張克華等研究了磨粒流拋光中磨粒微去除力學建模方法,提出磨粒去除工件表面微凸材料的動力來源為介質作用力、磨粒擠壓載荷和磨粒沖擊載荷。計時鳴等[提出一種計算流體力學與離散元法(CFD-DEM)耦合的磨粒流建模方法,構建了面約束軟性磨粒流力學模型。

3.1.2材料去除率建模

磨粒幾何模型是影響游離磨粒加工材料去除率的關鍵因素之一。磨粒形狀、尺寸和分布特征直接影響材料去除率和表面加工質量。在磨削與拋光過程中,由磨粒運動狀態主導的二體與三體磨損機制對材料去除率和表面加工質量具有重要影響[64]。因此,深入研究磨粒的幾何模型對優化游離磨粒加工工藝、提高加工效率和表面質量具有重要意義。目前,學者們基于Preston方程和磨粒微觀接觸理論,針對不同游離磨粒加工過程中材料去除的特點,建立了不同的材料去除率模型[5-74]。對于新型游離磨粒加工方法,材料去除率還受其他特殊因素的影響,通常通過識別關鍵影響因素并將其引人Preston方程來改進材料去除率模型[55]。常見游離磨粒材料去除率模型如表4所示。

WEI等[5將單一磨粒的材料去除率模型(圖7a)與游離磨粒的統計模型相結合,提出了新的AFM材料去除率預測模型。李敏等[基于非牛頓冪律流體剪切增稠效應,提出一種新型拋光方法——剪切增稠拋光

表4游離磨粒材料去除率模型

Tab.4 Freeabrasivematerialremoval ratemodel

"

(STP),并根據Preston方程建立材料去除率模型,該模型對材料去除率的預測誤差在 5% 以內。圖7b為剪切增稠對力流變拋光的影響機理。張爭艷等[74指出磨粒侵人工件表面深度對后續加工表面的三維形貌重建具有關鍵作用。圖7c為磨粒侵入工件表面的幾何關系圖,根據磨粒與材料接觸區局部放大圖(圖7d)的幾何關系可得磨粒侵入工件表面的深度 h 。KORDON-SKI等[4]通過對加工過程中磨粒表面納米壓痕的研究,提出磁性磨粒剪切流碰撞理論,并基于懸浮液中顆粒的動量守恒建立了磁流變加工的材料去除率模型。

3.1.3表面粗糙度建模

游離磨粒加工主要應用于研磨領域,對表面粗糙度要求較高,其加工效果受磨粒粒徑、研磨介質、磨粒濃度等因素影響。磨粒幾何學建模通過磨粒形狀、接觸面積以及加工過程中的相互作用等影響表面粗糙度。計時鳴等基于CFD-DEM方法得到磨粒-壁面碰撞分布及工件表面材料去除分布,并在此基礎上研究了面約束軟性磨粒流加工內外環的粗糙度變化(圖8a)。黃傳錦等采用先水磨后油磨的加工工藝,研究了游離磨粒研磨中研磨介質(水或油)對 {β-Ga2O3 表面形貌的影響,使其表面粗糙度降低至 24nm (圖8b)。GOV等研究了4種游離磨粒(SiC、 Al2O3 / B4C 和石榴石)對磨粒流加工過程的影響,發現磨粒硬度越大,表面粗糙度改善效果越明顯(圖8c)。JAIN等通

"

過理論值與試驗值的對比研究,發現磨粒濃度會對光整加工過程中表面粗糙度變化產生顯著影響。GOV等[研究了AISID2工具鋼經電火花線切割處理后,其材料硬度對磨粒流加工過程的影響。張爭艷等[74基于磁流變液的流變特性和磨粒受力情況,提出表面輪廓生成算法,模擬了不同加工參數下的工件表面形貌和相關三維形貌表征參數。肖強等基于單顆磨粒的材料去除作用,建立了磁流變拋光的表面粗糙度模型。

3.2 固結磨粒加工

磨粒形狀直接影響其韌性和銳利度,在磨削中起著關鍵作用,常見形狀包括球形、圓錐形和多面體。磨粒形狀還會影響材料去除機制和工件完整性。根據工件材料和加工要求選擇合適的磨粒形狀,可以提高磨削效率、加工質量并延長磨具壽命。實際應用中,碳化硅砂輪(常用于磨削陶瓷、玻璃等非金屬材料)通常采用球形或圓錐形磨粒;氧化鋁砂輪(常用于磨削金屬材料)同樣多采用球形或圓錐形磨粒;金剛石砂輪(用于磨削硬脆材料)和cBN砂輪(用于高速磨削高溫合金)的磨粒形狀則較為多樣。

3.2.1 磨削力建模

磨粒幾何學建模是構建磨削力模型的基礎,通過分析磨粒受力狀態可推導加工過程中的磨削力。不同幾何形狀的磨粒,其受力模式和受力狀態各不相同。大多數磨削力模型是通過分析單顆磨粒力學行為,結合磨粒運動學與接觸模型構建。LI等[通過分析材料去除行為,提出根據工件材料和加工要求選擇合適的磨粒形狀以提高磨削效率、加工質量和磨粒壽命,并綜述了錐形磨粒、球形磨粒以及磨損狀態下磨粒的磨削力模型。崔歆等[為精確表征磨粒-工件界面的摩擦學特性,對cBN磨粒形態進行了統計建模(圖9a),提出基于截角六面體磨粒的砂輪建模方法,揭示了單顆磨粒力學行為(圖9b~圖9c)并建立磨削力數學模型。LIU等[3提出基于隨機磨粒幾何特征的改進磨削力模型,深入分析了磨粒幾何特性和空間特性對有效作用面積的影響機理(圖9d)。

除以上學者外,還有學者通過切屑形成能[8、未變形切屑厚度[2]、面齒輪磨削[83]、超聲振動[84]、支持向量機[85]、靜剛度和功率[8]等方法對固結磨粒的磨削力進行建模研究,具體模型見表5。

3.2.2 磨削熱建模

磨削熱是由眾多有效磨粒產生的熱量累積形成的。考慮到單個磨粒與工件的接觸面積遠小于整個砂輪與工件的接觸面積,可以采用經典固體傳熱理論中的點熱源模型來分析磨削熱。各有效磨粒產生的熱量形成局部溫度場,通過疊加所有局部溫度場可得到整個磨削區域的溫度場分布。移動熱源(或磨粒)的熱通量強度與特定切削參數下的磨粒-工件接觸時間有關,且相同接觸狀態磨粒產生的磨削熱會根據其最終切削深

圖9單顆磨粒磨削力數學模型[36,80]

Fig.9 Mathematical model of single abrasive particle of grinding force[36,so]

表5固結磨粒磨削力模型Tab.5 Fixed abrasive grinding force model

度而變化,具體模型見表 6

YANG等8對磨削熱模型進行了系統分析和總結,綜述了這些磨削熱模型的應用,闡明了磨削弧區熱源分布、熱量分布和對流傳熱對磨削溫度場的影響規律。LIU等[8]提出了基于離散熱源的磨粒摩擦學機理和改進溫度場模型,揭示了實際磨削過程中工件的溫度變化規律和有效磨粒熱分布機理,所建離散熱源溫度場數學模型的最小誤差可達 4.9% ,誤差 lt;10% 的區域占比達 86% 。PRASANNA等[9]研究了超聲振動頻率對干磨削中溫度效應的影響,基于移動線熱源模型通過地下溫度測量估算了熱通量。LI等結合三角形熱流分布模型和實測數據,建立了磨削過程中的溫度分布模型及磨削參數對溫度影響的理論計算模型,并據此提出二次曲線熱流分布模型,以更準確地描述磨削過程中的熱傳遞現象。

3.2.3 表面粗糙度建模

磨削表面形貌是砂輪表面所有參與切削磨粒運動軌跡的疊加結果。由于砂輪表面磨粒高低不平、分布不均,其切削軌跡不斷變化,經反復作用后在工件表面留下高低起伏的三維形貌。因此,不同磨粒幾何形狀和排列方式會導致不同的切削軌跡和材料去除機制,最終的表面粗糙度特征也各不相同。唐立志[25]通過坐標矩陣法建立了工件表面初始矩陣,研究了磨削深度對工件表面粗糙度的影響。LIU等提出了考慮彈性接觸的表面形貌建模方法,表面粗糙度平均預測誤差為 3.25% 。GU等[基于灰狼算法-支持向量機建立了內圓磨削表面粗糙度預測模型,誤差均在 10% 以內。CHI等提出了外圓磨削工件表面形貌仿真模型,表面粗糙度仿真結果與實驗數據的誤差為 10.17% 。陳海鋒等[95]提出表面微觀形貌生成的區域逼近求解算法模擬超聲磨削的三維表面微觀形貌,表面粗糙度預測誤差為 12.19% 。

表6固結磨粒磨削熱模型

Tab.6 Grinding heat model of fixed abrasive grinding

除上述學者的研究外,還有其他學者[96-100]通過數值模擬[101-105]、齒輪磨削[106-109]、磨削振動[10-113]、粗糙度預測軟件[114]、自旋轉磨削單晶硅片[15-18]等不同方法對工件的表面粗糙度進行預測,具體預測模型見表7。

4磨粒形狀可控制備與整形方法

4.1磨粒制備

磨粒制備是指將原始磨粒加工成特定形狀、尺寸和性能,以滿足不同工業應用需求的過程。原始磨粒既可以是自然界存在的礦物(如石英、剛玉等),也可以是人工合成材料(如碳化硅、金剛石等)。在磨粒制備時,需要考慮微觀結構設計,以優化磨粒與工件的物理接觸狀態和界面摩擦磨損行為。具有優異化學穩定性的剛玉磨粒被廣泛用于制造不同類型的游離磨粒和固結磨粒。雖然超硬磨粒能加工難加工材料,但其修整與生產成本較高。HUANG等[10]綜述了溶膠-凝膠法制備陶瓷剛玉磨粒,從前驅體合成、顆粒成型和燒結3個方面介紹了陶瓷剛玉磨粒性能優化方法,并提出了如圖10所示的微模具復制、轉移輔助絲網印刷和激光切割3種特定形狀磨粒成型技術。

南京航空航天大學朱永偉團隊詳細研究了聚集體金剛石磨粒的性能、制備方法及應用。凌順志等[121]探討了聚集體金剛石磨粒在親水性FAP中的應用及其對固結磨粒墊研磨加工性能的影響。沈琦[122]研發了一種新型常壓多晶金剛石,通過陶瓷結合劑將其黏結成多晶結構顆粒,并分析了制備過程中各工藝參數的影響。唐超[123基于硅基結合劑特性提出新的聚集體金剛石制備工藝,通過研磨試驗研究了工藝參數對硅基聚集體金剛石加工性能的影響并對其進行了優化。

BUTLER等[124]探討了圓形、方形和三角形磨粒在銅和藍寶石上刻劃時的材料去除過程(圖11,刻劃深度為 1~3μm )。研究發現,塑性材料上不同形狀磨粒產生的劃痕形態并無顯著差異,但脆性材料表面的劃痕形貌則能精準反映磨粒的幾何形狀;在切削力方面,方形磨粒的切削力最小,而圓形磨粒的切削力最大;與方形磨粒相比,三角形磨粒的切削力高 28% 。

表7表面粗糙度預測模型

Tab.7 Prediction model of surface roughness

圖10陶瓷剛玉磨料性能的優化方法[120]

Fig.10Optimization method of ceramic corundum abrasive properties [12

?

圖11脈沖激光燒蝕生成的磨粒陣列的SEM圖像[124] Fig.11 SEM imagesoftheabrasivearraygenerated by pulsed laser ablation[124]

4.2磨粒整形

砂輪修整是保證砂輪型面尺寸、輪廓形貌及精度的重要措施,包括整形和修銳兩部分。其中,微米級整形是在磨粒層面進行的操作(即磨粒整形)。

GUO等[125]研發了一種新型微結構粗晶金剛石砂輪,使用納秒脈沖激光成功制造出粒度為 150μm 的單層電鍍金剛石砂輪(圖12),并研究了微結構對表面粗糙度和亞表面損傷的影響。黃家駿等[12基于金剛石熱化學石墨化去除機理(圖13a),提出放電熱與交變切削力耦合的金剛石磨粒修整修平方法,在修整過程中將砂輪與電極間的放電熱傳遞至磨粒切削界面后與摩擦熱融合,利用交變切削力增強其表面熱化學石墨化去除。郭銳斌[127]利用連續脈沖放電熱能實現金剛石磨粒高溫石墨化修平,將微磨粒出刃尖端修平修齊以增多有效磨粒數,實現了金屬材料的干式光滑磨削加工,取代了傳統研磨拋光的多道工序及所需的切削液,修尖前后如圖13c所示。黃武等[128]以碳鋼碟輪為修整工具,對比研究了相同條件下金剛石與cBN磨粒修整過程中的磨損特征(圖13d)。

5 結論與展望

5.1結論

本文綜述了磨粒幾何學建模方法及其在磨削加工中的應用研究進展,分析了該領域的發展趨勢、文獻計量分析、建模方法、應用現狀及磨粒形狀可控制備與整形方法。得到以下結論:

(1)目前磨粒幾何模型主要包括球形、錐形、臺形以及多面體等。從簡化幾何模型到復雜不規則多面體模型的發展,可以更準確地模擬實際磨粒的幾何特征及其材料去除行為。建模方法的選擇應綜合考慮磨粒種類和磨削過程中磨粒與工件的接觸狀態。

(2)磨粒幾何學建模在固結磨粒和游離磨粒精密光整加工中得到了廣泛應用。固結磨粒加工通過固定磨粒實現材料去除,而游離磨粒加工則采用自由懸浮顆粒。盡管二者在加工機理、磨粒使用以及研磨液

"

需求等方面存在顯著差異,但磨粒幾何學建模的精確度對二者的磨削力、磨削熱和表面粗糙度等參數均有重要影響。

(3)磨粒制備與整形是實現磨粒形狀可控成形的重要方法。通過優化磨粒的制造工藝和整形方法,可以顯著提升磨粒的切削性能、自銳性和加工質量。目前的研究涵蓋了多種磨粒制造和整形方法,包括微模具復制、轉移輔助絲網印刷、激光切割、激光微結構化以及放電熱與交變切削力耦合修整等。

5.2 展望

磨粒幾何學建模是精密加工領域的重要研究方向,對提升加工性能具有重要意義。同時,磨粒形狀的可控制備與整形方法也將持續優化,以適應更廣泛的材料和加工條件。以下問題值得進一步深入研究:

(1)人工智能為磨粒幾何學建模帶來了新的發展機遇。未來研究將著重于制造過程中數據、信息和知識的數字化表征,以實現磨粒幾何學建模的智能化。這將涉及數字化建模、仿真、預測和優化技術的綜合應用,構建知識與數據融合的智能系統。人工智能技術的深人應用有望成為磨粒幾何學建模的研究熱點。此外,智能算法在磨粒識別中的應用正在改變傳統的磨粒分析方法。通過應用人工智能算法網絡,可以實現對磨粒圖像中多個目標磨粒的像素級精確識別。基于這些識別結果,可進一步實現磨粒圖像的定量評估。

(2)磨粒加工技術的不斷進步,不僅為磨粒工具行業帶來了新的挑戰,還推動了磨粒形狀可控設計與制造技術的發展。未來磨粒工具制造需突破傳統燒結、電鍍、釬焊、凝膠等方法的局限,將自動化、人工智能技術應用于磨粒制備,尤其是與激光燒結、3D打印等技術高效融合,實現形狀可控的精準制造,并攻克結構化磨粒工具、磨粒可控排布工具等的規模化生產難題。

(3)磨粒磨損和失效表征是一個復雜過程。盡管研究已從宏觀層面延伸到微觀層面,但由于實驗條件的限制,仍未能完全解釋加工過程中力、熱等多物理場相互作用下的磨粒磨損失效機理。磨粒失效形式包括微觀破碎、宏觀破碎、脫落和磨平等,主要由其所承受的力、溫度場以及可能發生的化學反應決定。在線檢測技術的應用有望成為未來研究的重要方向,可更準確地監測磨粒在實際加工中的磨損狀態,為磨粒工具設計和優化提供數據支持。

參考文獻:

[1] 別文博,趙波,陳凡,等.超聲加工制備表面微織構及使役性能研究進 展[J].金剛石與磨料磨具工程,2023,43(4):401-416. BIE Wenbo,ZHAO Bo,CHENFan,et al.Progressof ultrasonic vibration-asssted machining surface micro-texture and serviceability [J].Diamondamp; AbrasivesEngineering,2023,43(4): 401-416.

[2] 宋宇翔,許芝令,李長河,等.納米生物潤滑劑微量潤滑磨削性能研究 進展[J].表面技術,2023,52(12):1-19,488. SONG Yuxiang, XU Zhiling,LI Changhe, et al. Research progress on thegrinding performance of nanobiolubricant minimum quantity lubrication [J].Surface Technology,2023,52(12): 1-19, 488.

[3] 王曉銘,李長河,楊敏,等.納米生物潤滑劑微量潤滑加工物理機制研 究進展[J].機械工程學報,2024,60(9):286-322. WANG Xiaoming,LI Changhe, YANG Min, et al. Research progress onthephysical mechanism of minimum quantity lubricationmachining with nano-biolubricants [J].Journal of Mechanical Engineering,2024, 60(9): 286-322.

[4] 許文昊,李長河,張彥彬,等.靜電霧化微量潤滑研究進展與應用[J]. 機械工程學報,2023,59:11-138. XU Wenhao,LI Changhe,ZHANG Yanbin,etal.Research progress andapplication of electrostatic atomization minimum quantity lubrication[J].Journal of Mechanical Engineering,2023,59(7):110- 138.

[5] 劉舒穎,王福增,郭子宇,等.基于有限元/離散元耦合的大理石高速 劃擦過程仿真[J].金剛石與磨料磨具工程,2019,39(1):95-100. LIU Shuying,WANG Fuzeng,GUO Ziyu,et al. Simulationof highspeed scratching process of marble based on finite element/discrete element coupling method [J]. Diamond amp; Abrasives Enginering,2019, 39(1): 95-100.

[6] 王建宇,黃國欽.金剛石磨粒工具增材制造技術現狀及展望[J].金剛 石與磨料磨具工程,2022,42(3):307-316. WANG Jianyu, HUANG Guoqin. Review on manufacturing diamond abrasive toolsbyadditivemanufacturing technology[J].Diamondamp; Abrasives Engineering,2022,42(3):307-316.

[7] QU S S,YAO P, GONG Y D,et al Modellng and grinding characteristicsof unidirectional C-SiCs[J].Ceram Int,2022,48(6): 8314-8324.

[8] 王洋.金剛石磨粒超聲振動刻劃 BK7玻璃的亞表面損傷研究[J].金 剛石與磨料磨具工程,2020,40(1):29-33. WANG Yang. Study on sub surface damage of BK7 glassby ultrasonic vibrationof diamond abrasive[J].Diamond amp; Abrasives Engineering, 2020,40(1): 29-33.

[9] 謝乾,葛培琪,孟劍峰,等.電鍍金剛石線鋸鍍鎳層力學性能及磨粒把 持力研究[J].金剛石與磨料磨具工程,2020,40(1):50-55. XIE Qian,GE Peiqi,MENG Jianfeng,etal.Study on mechanical properties of nickel-plated layer and abrasive holdingforce of electroplated diamond wiresaw[J]. Diamond amp; Abrasives Engineering, 2020, 40(1): 50-55.

[10] LI C,LI X L,WU YQ, et al. Deformation mechanism and force modelling of the grindingofYAG single crystals[J].IntJMach Tool Manu,2019,143: 23-37.

[11] CHU Y,YAN S J, YANG Z Y, et al. Grain shape-protrusion-based modeling and analysisof material removal inrobotic belt grinding[J].J Manuf Process,2024,110: 211-223.

[12] LIUYM,WARKENTINA,BAUERR, etal. Investigationof diferent grain shapes and dressing to predict surface roughness in grinding using kinematicsimulations[J].PrecisEng,2013,37(3):758-764.

[13] RASIM M, MATTFELD P,KLOCKEF.Analysisofthegrainshae influence on the chip formationin grinding[J].JMater Process Tech, 2015,226: 60-68.

[14] ZHANG S, DAI H.Efect of diamond grain shape on gallium nitride nano-grinding process [J]. Mater Sci Semicond Process,2024,171: 108034.

[15] ZHAOCY,LIJY,LIUYM.Studyon the grindingforce of single grain in rail grinding based onopen-type belt grinding[J].J Manuf Process,2023,99; 794-811.

[16] LILY,ZHANGYB,CUIX, etal.Mechanical behaviorand modeling of grinding force: A comparative analysis [J].JManuf Process,2023, 102: 921-954.

[17] ZHANG Z, SUI M,LI C, et al. Residual stress of grinding cemented carbide using MoS2 nano-lubricant[J].IntJAdvManufTechnol,2022, 119(9/10): 5671-5685.

[18] YANG M, LI C H, ZHANG Y B, et al. Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under diffrent lubricating conditions [J]. Ceram Int, 2019,45(12): 14908-14920.

[19] LI C,HU Y X,WEI Z Z,etal.Damage evolution and removal behaviors of GaNcrystals involved in double-gritsgrinding[J].IntJ Extreme Manuf,2024,6(2): 025103.

[20] CAO Y,DING WF, ZHAOB A,etal.Effectof intermientutting behavior on the ultrasonic vibration-assisted grinding performance of Inconel718 nickel-based superalloy [J].Precis Eng,2022,78:248-260.

[21] YANG M,LI C H, SAID Z, et al. Semiempirical heat flux model of hard-brittebone material inductile microgrinding[J].JManufProcess, 2021,71: 501-514.

[22] ZHAO B, ZHANG S, LI JF. Evaluation and ANN-based prediction on functional parameters of surface roughness in precision grinding of cast iron[J].Advanced MaterialsResearch,2014,1017:166-171.

[23] 王宏麗.葉片機器人砂帶磨削材料去除微觀建模及實驗研究[D].武 漢:華中科技大學,2021. WANG Hongli.Micro-modeling and experimental study on material removal in blade robot abrasive belt grinding [D]. Wuhan: Huazhong UniversityofScience and Technology,2021.

[24] 呂黎曙,鄧朝暉,岳文輝,等.單顆磨粒磨削機理與數據融合驅動的磨 削過程建模分析[J].機械工程學報,2023,59(7):200-215. LYU Lishu, DENG Zhaohui, YUE Wenhui, et al. Modeling analysis of grinding process driven by single grain grinding mechanism and data fusion[J].Journal ofMechanical Engineering,2023,59(7):200-215.

[25] 唐立志.磨削區微通道幾何模型及微液滴浸潤機制與實驗驗證[D]. 青島:青島理工大學,2022. TANG Lizhi. Geometric model of micro-channel in grinding area and weting mechanism of micro-droplets and experimental verification [D]. Qingdao: Qingdao UniversityofTechnology,2022.

[26] 張勇強,汪久根,陳芳華,等.磨粒磨損的磨粒接觸熱分析[J].潤滑與 密封,2018,43(10):1-5. ZHANG Yongqiang,WANG Jiugen, CHEN Fanghua, et al. Thermal analysisofdebrisontactiabrasive wear[J].LubricatioEngieing, 2018,43(10): 1-5.

[27] GONGY,WANGB,WANGW.The simulationof grindingwheels and ground surface roughnessbased on virtual reality technology[J]. Journal ofMaterials Processing Technology,20o2,129(1/2/3):123-126.

[28]王君明,葉人珍,湯漾平,等.單顆磨粒的平面磨削三維動態有限元仿 真[J].金剛石與磨料磨具工程,2009,29(5):41-45. WANG Junming, YE Renzhen, TANG Yangping, et al. 3D dynamic finite element simulation analysisofsingle abrasive grain duringsurface grinding[J].Diamondamp; AbrasivesEngineering,20o9,29(5):41-45.

[29] 李巾錠,任成祖,呂哲,等.單顆粒金剛石平面磨削 C/SiC復合材料的 有限元仿真[J].材料科學與工程學報,2014,32(5):686-689,715. LI Jinding,RENChengzu,LYU Zhe,etal.Finite element simulationof single diamond abrasive surface grinding C/SiC[J].Jounal of Materials Science and Engineering,2014,32(5): 686-689,715.

[30] LI L F,REN X K,FENG H J,et al. A novel material removal rate model based onsingle grain force for robotic belt grinding[J].Journal ofManufacturing Processes,2021,68:1-12.

[31] HUANG Y,LIU G, XIAO G J, et al. Abrasive belt grinding force and its influence onsurface integrity[J].Mater Manuf Process,2023,38(7): 888-897.

[32] 全俊奎.單顆粒磨削過程磨削力及亞表面損傷的理論與仿真研究 [D].長沙:湖南大學,2017. QUAN Junkui. Theoretical and simulation studyon grinding force and subsurface damage in single particle grinding process [D]. Changsha: Hunan University, 2017.

[33] 張彥彬.植物油基納米粒子射流微量潤滑磨削機理與磨削力預測模 型及實驗驗證[D].青島:青島理工大學,2018. ZHANG Yanbin. Grinding mechanism and grinding force prediction model of vegetable oil-based nano-particle jet micro-lubrication and experimental verification [D]. Qingdao:Qingdao Universityof Technology, 2018.

[34] 言蘭,融亦鳴,姜峰.氧化鋁砂輪地貌的量化評價及數學建模[J].機 械工程學報,2011,47(17):179-186. YANLan,RONG Yiming,JIANG Feng.Quantitive evaluation and modeling of alumina grinding wheel surface topography[J]. Journal of Mechanical Engineering,2011,47(17): 179-186.

[35]宿崇,許立,劉元偉,等.基于 SPH法的CBN 磨粒切削過程數值模擬 [J].中國機械工程,2013,24(5):667-671. SU Chog, XULi,LIUYuanwei,etal.Numericalsimulatioofcuting 442 process of CBN grit based on SPH method [J]. China Mechanical Engineering,2013,24(5):667-671.

[36] LIU M,LI C, ZHANG Y, et al. Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics[J].Chinese Journal of Aeronautics,2023,36(7):160- 193.

[37] LI HN, YUTB, WANG Z X, et al. Detailed modeling of cuting forces in grinding process considering variable stages of grain-workpiece micro interactions[J].IntJMech Sci,2017,126:319-39.

[38] 李超,霍文國.基于ABAQUS 的單顆磨粒磨削 GH4169 高溫合金有 限元分析[J].工具技術,2023,57(8):86-92. LI Chao,HUO Wenguo.Finite element analysis of single abrasive grinding GH4169 superalloy based on ABAQUs [J]. Tool Engineering, 2023,57(8): 86-92.

[39] LIU W Y, ZHANG L,FANG Q H, et al.A predictive model of subsurface damage and material removal volume for grinding of brittle materials consideringsinglegrit micro-geometry[J].IntJdvManuf Tech,2019,102(5/6/7/8): 2231-2243.

[40] 劉瑞虎,郭磊,劉永勝,等.基于 SPH方法的碳化硅材料單顆磨粒磨 削仿真[J].組合機床與自動化加工技術,2022(5):55-58. LIU Ruihu, GUO Lei, LIU Yongsheng,et al. Simulation of single abrasive grinding of silicon carbide material based on SPH method [J]. Modular Machine Tool amp; Automatic Manufacturing Technique, 2022(5): 55-58.

[41] 劉偉.基于單顆磨粒切削的氮化硅陶瓷精密磨削仿真與實驗研究 [D].長沙:湖南大學,2014. LIU Wei. Simulation and experimental study on precision grinding of silicon nitride ceramics based on single abrasive cuting [D]. Changsha: Hunan University,2014.

[42] 鄧瑋.基于磨粒特性的發動機滾動軸承磨損機理研究[D].南昌:南 昌航空大學,2020. DENG Wei. Study on wear mechanism of engine rolling bearing based onabrasive characteristics [D].Nanchang:Nanchang Hangkong University, 2020.

[43]宿崇,施志輝,劉元偉.陶瓷CBN砂輪地貌建模與磨削仿真[J].中國 機械工程,2012,23(14):1742-1745. SU Chong,SHI Zhihui, LIU Yuanwei. Topography modeling and grinding simulationofvitrified bonded CBN whee [J].China Mechanical Engineering,2012,23(14): 1742-1745.

[44] ZHANG P, ZHAO H,SHI C,et al. Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation[J].Appl SurfSci,2013,280:751-756.

[45] 范梓良.單顆磨粒高速磨削 AISI1045 鋼磨削機理的仿真與實驗研 究[D].太原:太原理工大學,2018. FAN Ziliang.Simulation and experimental studyon grinding mechanism of AISI1045steel by single abrasive grain at high speed [D].Taiyuan: Taiyuan University of Technology,2018.

[46] 余劍武,劉智康,吳耀,等.合金鋼 20CrMo 的單顆磨粒高速磨削仿真 研究[J].制造技術與機床,2015(12):97-102. YUJianwu,LIU Zhikang,WUYao,etal. Simulationof high-speed grinding of 2OCrMo based on singlegraincutting [J].Manufacturing Technologyamp; Machine Tool,2015(12): 97-102.

[47] RuTTIMANN N, ROETHLIN M, BUHL S, et al. Simulation of hexaoctahedral diamond grain cuting tests using the SPH method[J]. Procedia CIRP,2013,8: 322-327.

[48] DE PELLEGRIN D V,CORBIN N D, BALDONI G, et al. Diamond particle shape: Its measurement and influence in abrasivewear [J]. TribologyIteratioal,,42(1):68.

[49] 趙小雨.金剛石砂輪三維形貌建模及磨削工程陶瓷的數值仿真與實 驗研究[D].湘潭:湖南科技大學,2015. ZHAO Xiaoyu. Thre-dimensional shape modeling of diamond grinding wheel and numerical simulation and experimental studyongrinding engineering ceramics[D]. Xiangtan: Hunan University of Science and Technology, 2015.

[50] 李長河,侯亞麗,蔡光起,等.游離磨粒精密光整加工方法綜述[J].精 密制造與自動化,2009(1):4-9. LIChanghe,HOU Yali,CAI Guangqi,etal.Overviewof precision finishingwithunbonded abrasive[J].Precise Manufacturingamp; Automation,2009(1): 4-9.

[51] 李長河,侯亞麗,蔡光起,等.游離磨粒精密光整加工方法綜述 (續) [J].精密制造與自動化,2009(2):10-15. LI Changhe,HOU Yali,CAI Guangqi,etal.Overview ofprecision finishing with unbonded abrasive (sequel) [J]. Precise Manufacturing amp; Automation,2009(2):10-15.

[52] KULAWSKI M,MICROELECTRONICS V.Polishing of ground silicon wafer with fixed abrasive pad [R]. Germany: The Proceeding of 9th CMPUser Meeting Neuss,F,2002.

[53]YANG J,TIANC, WANGC.Nanometer lappng technologyathigh speed[J]. Science in China Series E:Technological Sciences,2007, 50(1): 27-38.

[54] 王建彬.固結磨料研磨藍寶石工件的材料去除機理及工藝研究[D]. 南京:南京航空航天大學,2015. WANG Jianbin. Study on material removal mechanism and technology of sapphireworkpiecegrinding with fixed abrasive[D].Nanjing: Nanjing University of Aeronautics and Astronautics,2015.

[55] 何春雷,李東洋,任成祖.游離磨料加工影響因素及材料去除模型研 究進展[J].吉林大學學報(工學版),2025,55(4):1123-1141. HE Chunlei, LI Dongyang,REN Chengzu.Research progresson influencing factorsand material removal models for freeabrasive machining[J].JoualofJilinUniversity (EngineeingandTchology Edition),2025,55(4): 1-1141.

[56] 黃衛清,寧青雙,安大偉,等.壓電超聲輔助研磨拋光技術研究進展 [J].壓電與聲光,2020,42(2):240-244,247. HUANG Weiqing,NING Qingshuang,AN Dawei, et al.Advancesin piezoelectric ultrasonic asisted grinding and polishing technology [J]. Piezoelectricsamp; Acoustooptics,2020,42(2):240-244,247.

[57] 萬林林,戴鵬,劉志堅,等.藍寶石超精密研磨加工研究進展[J].兵器 材料科學與工程,2018,41(1):115-123. WAN Linlin,DAI Peng,LIU Zhijian, etal.Research progressinultraprecision lapping processof sapphire [J].Ordnance Material Science and Engineering,2018,41(1): 115-123.

[58]徐慧敏,王建彬,李慶安,等.碳化硅晶片的化學機械拋光技術研究進 展[J].現代制造工程,2022(6):153-161,116. XU Huimin,WANG Jianbin,LI Qing'an,etal.Research progress of chemical mechanical polishing technology of silicon carbide wafer [J]. Modern MaufacturingEngineering,22(6):-616.

[59]王時英呂明,軋剛.磨料流加工的力學原理及應用[J].太原理工大學 學報,1998(3): 55-58. WANG Shiying,LYU Ming, YA Gang. The principle and application of abrasive flow machining(AFM)[J].Journal of Taiyuan University of Technology,1998(3): 55-58.

[60] GORANA V K, JAIN V K,LAL G K. Experimental investigation into cuting forces and active grain density during abrasive flow machining [J].International Journal of Machine Toolsand Manufacture,2004, 44(2/3): 201-211.

[61] GORANA V K,JAIN V K,LAL G K.Fores predictionduring material deformation inabrasive flow machining[J].Wear,2006,260(1/2):128- 139.

[62] 張克華,閔力,丁金福,等.磨料流微去除力學分析與可控因素影響 [J].中國機械工程,2014,25(18):2432-2438. ZHANG Kehua,MINLi,DING Jinfu,etal.Micro-cuting ofdriving force and controllable influencing factors in abrasive flow machining [J]. China MechanicalEngineering,2014,25(18):2432-2438.

[63]計時鳴,葛江勤,高濤,等.基于CFD-DEM耦合的面約束軟性磨粒流 加工特性研究[J].機械工程學報,2018,54(5):129-141. JI Shiming,GE Jiangqin, GAO Tao,et al. Study on machinability of surface-constrained softness abrasive flow based on CFD-DEM coupled method[J]. Journal of Mechanical Engineering,2018,54(5): 129-141.

[64]KORDONSKI W, GORODKIN S. Material removal in magnetorheological finishing ofoptics[J].ApplOptics,2011,50(14):1984-1994.

[65] WEI HB,PENG C,GAO H,et al. On establishment and validationof a new predictive model for material removal in abrasive flow machining [J].IntJMach ToolManu,2019,138:66-79.

[66] CHENG K, SHAOY Z,JADVA M, et al. Development of the improved Preston equation for abrasive flow machining of aerofoil structures and components [J].PIMech Eng J-JEng,2019,233(9):1397-1404.

[67]FARSAKOGLU O, KOCABAS H, BAYAR M, et al. Lapping with loose abrasives in lens manufacturing[M].SPIE,2000.

[68] ZHAO B. Chemical mechanical polishing: Threshold pressure and mechanism [J].Electrochemical and Solid-State Letters,1999,2(3): 145.

[69] RUNNELS S R. Feature- scale fluid - based erosion modeling for chemical-mechanical polishing [J]. Journal of The Electrochemical Society,1994,141(7): 1900.

[70]李敏,呂冰海,袁巨龍,等.剪切增稠拋光的材料去除數學模型[J].機 械工程學報,2016,52(7):142-151. LI Min,LYU Binghai,YUAN Julong,etal.Material removal mathematicsmodelof shear thickening polishing [J].Journal of Mechanical Enginering,2016,52(7):142-151.

[71] 張峰 張學軍,余景池,等.磁流變拋光數學模型的建立[J].光學技術, 2000(2): 190-192. ZHANG Feng,ZHANG Xuejun,YU Jingchi,et al. Foundation of mathematicsmodel of magnetorheological finishing [J].Optical Technique,2000(2): 190-192.

[72] LI M,LYU B H, YUAN JL,etal. Shear-thickening polishing method [J].Int JMachTool Manu,2015,94:88-99.

[73] 張學成,戴一帆,李圣怡,等.基于CFD 的磁射流拋光去除機理分析 [J].國防科技大學學報,2007(4):110-115. ZHANG Xuecheng,DAIYifan,LIShengyi, et al.Analysis of material removal mechanism inmagnetorheological jet polishingby CFD[J]. Journal of National University of Defense Technology,2007(4):110 115.

[74] 張爭艷,戴立達,喬國朝.磁流變拋光表面形貌仿真與試驗研究[J]. 河北工業大學學報,2023,52(2):1-8. ZHANG Zhengyan,DAI Lida,QIAO Guochao.Simulation and experimental study on surfacetopography of magnetorheological polishing[J].JournalofHebei UniversityofTechnology,2023,52(2):1- 8.

[75] 黃傳錦,周海,朱永偉,等.研磨液在氧化鎵晶體研磨中的作用[J].硅 酸鹽學報,2019,47(1):43-47. HUANG Chuanjin, ZHOU Hai, ZHU Yongwei, et al. Effect of lapping fluid on {β-Ga2O3 crystal lappingprocess[J].JoualoftheChinese Ceramic Society,2019,47(1):43-47.

[76] GOV K,EYERCIOGLU O. Effcts of abrasive types on the surface integrity ofabrasive-flow-machined surfaces[J].PIMech Eng B-JEng, 2018,232(6): 1044-1053.

[77] JAINRK, JAINVK,DIXITPM.Modelingof material removal and surface roughnessin abrasive flow machining process[J]. International Journal ofMachine Tools and Manufacture,1999,39(12):1903-1923

[78] GOV K,EYERCIOGLU O, CAKIR M V. Hardness effects on abrasive flow machining [J]. Journal of Mechanical Engineering,2013,59(10): 626-631.

[79] 肖強,王嘉琪,靳龍平.磁流變拋光表面粗糙度建模與仿真[J].工具 技術,2022,56(4): 52-59. XIAO Qiang, WANG Jiaqi, JIN Longping.Modeling and simulation of surface roughness in magnetorheological finishing[J].ToolEngiering, 2022, 56(4): 52-59.

[80] 崔歆,李長河,張彥彬,等.磁力牽引納米潤滑劑微量潤滑磨削力模型 與驗證[J].機械工程學報,2024,60(9):323-337. CUI Xin,LI Changhe,ZHANG Yanbin,et al.Forcemodel and verification of magnetic traction nanolubricant grinding[J]. Journal of Mechanical Engineering,2024,60(9): 323-37.

[81] TANG JY,DU J,CHEN Y P.Modeling and experimental studyof grinding forces in surface grinding[J].JMater Process Tech,2009, 209(6): 2847-2854.

[82] WANG JM, YER Z,CHENHP,et al. Surface grinding force modelof steel 55 based on undeformed chip thickness with cBN electroplated whels [J].Advanced Materials Research,2011,189:1768-1773.

[83] 羅旦.面齒輪磨削力建模分析及工藝參數優化研究[D].株洲:湖南 工業大學,2017. LUO Dan. Modeling and analysis of grinding force and optimization of process parameters for face gear [D]. Zhuzhou: Hunan University of Technology, 2017.

[84] 董昊.螺旋錐齒輪旋轉超聲振動輔助磨削的磨削力機理研究[D].天 津:天津理工大學,2021. DONG Hao. Study on grinding force mechanism of spiral bevel gear assisted byrotating ultrasonic vibration[D].Tianjin: Tianjin University of Technology, 2021.

[85] GU P, ZHU C M, TAO Z, et al. A grinding force prediction model for SiCp/Al composite based on single-abrasive-grain grinding [J]. Int J Adv Manuf Tech,2020,109(5/6): 1563-1581.

[86] 朱文博,黎康順,朱歡歡,等.圓錐滾子球基面磨削力模型及實驗研究 [J].中國機械工程,2020,31(6):679-687. ZHU Wenbo,LI Kangshun,ZHU Huanhuan, et al. Grinding force model and experimental study of tapered roler ballbasesurfaces [J]. China Mechanical Engineering,2020,31(6): 679-687.

[87] 張建華,葛培琪,張磊.基于概率統計的磨削力研究[J].中國機械工 程,2007(20): 2399-2402. ZHANG Jianhua,GE Peiqi,ZHANG Lei.Research on thegrinding forcebased on the probability statistics [J].China Mechanical Engineering,2007(20): 2399-2402.

[88] YANG M,KONGM,LICH,etal.Temperature field model inurface grinding: A comparative assessment [J]. Int J Extreme Manuf, 2023, 5(4): 042011.

[89] LIU M Z,LI CH, ZHANG YB,et al.Analysis of grain tribology and improved grinding temperature model based on discrete heat source [J]. Tribology International,2023,180:108196.

[90] MAHADDALKAR PM, MILLER M H. Force and thermal effects in vibration-asisted grinding[J].IntJAdvManufTech,2014,71(5/6/7/8): 1117-1122.

[91] LI B Z, ZHU D H, PANG J Z,et al. Quadratic curve heat flux distribution model in the grinding zone[J].IntJAdvManufTech,2011, 54(9/10/11/12): 931-940.

[92] LIU Y, SONG S, XIAO G, et al. A high-precision prediction model for surface topography of abrasive belt grinding considering elastic contact [J].IntJAdvanufTechnol,23,25(1): 777792.

[93] GU Q W,DENG Z H,LV L S,et al. Prediction research for surface topographyof internal grinding based on mechanismanddata model[J]. Int JAdvManufTech,2021,113(3/4):821-36.

[94] CHI J,GUO JL,CHEN LQ.The study on a simulation model of workpiece surface topography in external cylindrical grinding[J]. Int J Adv Manuf Tech,2016,82(5/6/7/8): 939-950.

[95] 陳海鋒,唐進元,鄧朝暉,等.考慮耕犁的超聲磨削表面微觀形貌建模 與預測[J].機械工程學報,2018,54(21):231-240. CHEN Haifeng,TANG Jinyuan, DENG Zhaohui, et al.Modelingand predicting surface topographyof the ultrasonic assisted grinding process considering ploughing action [J].Journal of Mechanical Engineering, 2018,54(21): 231-240.

[96] 易軍,易濤,陳冰,等.結構化砂輪磨削加工工件表面形貌建模與實驗 研究[J].中國機械工程,2023,34(22):2711-2720. YI Jun,YITao,CHENBing,etal.Modelingandexperimentalresearch of ground workpiece surface topography after grinding with structured grindingwheels[J]. China Mechanical Engineering,2023,34(22):2711- 2720.

[97]CHEN C S, TANG JY, CHEN HF, et al. Research about modeling of grinding workpiece surface topography based on real topography of grinding wheel[J].IntJAdv Manuf Tech,2017,93(5/6/7/8):2411- 2421.

[98] WU J, CHENG J, GAO C C, et al. Research on predicting model of surface roughnessinsmall-scale grinding ofbrittle materials considering grinding tool topography[J].IntJMech Sci,2020,166: 105263.

[99]LI G C,LUJ, ZHOU H G, et al. Surface topography modeling and analysis ofcamshaft generated byswing grinding process[J].Int JAdv Manuf Tech,2022,121(7/8): 5361-5375.

[100]YU HY,WANG J, LUY S.Simulation of grinding surface roughness using the grinding wheel with an abrasive phyllotactic pattern [J].Int J AdvManuf Tech,2016,84(5/6/7/8):861-871.

[101]ZHOU X, XI F. Modeling and predicting surface roughness of the grindingprocess[J].International Jourmal of Machine Toolsand Manufacture,2002,42(8): 969-977.

[102] JIANG JL, GE PQ, BI W B,et al. 2D/3D ground surface topography modeling considering dressing and wear effects in grinding process[J]. Int JMach Tool Manu,2013,74: 29-40.

[103]CHEN S S, CHEUNG C F, ZHANG F H, et al. Thre-dimensional modelling and simulation of vibration marks on surface generation in ultra-precision grinding[J].Precis Eng,2018,53:221-235.

[104] CHEN H, YU TB,DONG JL,et al. Kinematic simulation of surface grinding process with random cBN grain model [J]. Int JAdv Manuf Tech,2019,100(9/10/11/12): 2725-2739.

[105]ZOUL,LIU X,HUANG Y, et al.A numerical approach to predict the machined surface topography of abrasive belt flexible grinding [J]. Int J Adv Manuf Tech,2019,104(5/6/7/8): 2961-2970.

[106]ZHANG Y, WU T,LIC,etal. Numerical simulations of grinding force and surface morphology during precision grinding of leucite glass ceramics [J].IntJMech Sci,2022,231:107562.

[107]MA X F,CAI Z Q, YAO B,et al. Prediction model for surface generation mechanism and roughnessin face gear grinding [J]. IntJAdv Manuf Tech,2022,120(7/8): 4423-4442.

[108] CAI S,CAI Z, LIN C. Modeling of the generating face gear grinding force and the prediction of the tooth surface topography based on the abrasivedifferentialelementmethod[J].CIRP Journalof Manufacturing Science and Technology,2023,41: 80-93.

[109] GAO S, MA X F, CAI Z Q, et al. Prediction of surface topography in face gear grinding based on dynamic contour interferometric sampling method[J].IntJAdv Manuf Tech,2024,130(7/8):3401-3418.

[110]CAOYL, GUANJY,LIB,etal. Modeling andsimulationofgriding surface topography considering wheel vibration [J]. Int JAdv Manuf Tech,2013,66(5/6/7/8): 937-945.

[111]馮偉,陳彬強,蔡思捷,等.考慮機床-磨削交互的工件表面形貌仿真 [J].振動與沖擊,2016,35(4):235-240. FENG Wei, CHEN Binqiang, CAI Sijie, et al. Simulation of surface topography considering process-machine interaction in grinding [J]. Journal of Vibrationand Shock,2016,35(4): 235-240.

[112]WANG X Z, YU T B, DAI Y X, et al. Kinematics modeling and simulating of grinding surface topography considering machining parameters and vibration characteristics[J].IntJAdvManufTech,2016, 87(9/10/11/12): 2459-2470.

[113]張園,徐念偉,鮑巖,等.軸向超聲輔助端面磨削金屬表面形貌及粗糙 度預測[J].機械工程學報,2023,59(5):307-316. ZHANG Yuan,XU Nianwei,BAO Yan, et al. Surface topography and roughness prediction of axial ultrasonic assisted facing grinding metal [J]. Journal ofMechanical Engineering,2023,59(5): 307-316.

[114]宋偉偉,黃云,肖貴堅,等.TC17鈦合金砂帶磨削表面形貌形成及其 預測研究[J].航空制造技術,2021,64(14):56-62. SONG Weiwei,HUANG Yun,XIAO Guijian, etal. Research on surface morphology formation and prediction of titanium alloy by abrasivebeltgrinding[J].AeronauticalManufacturingTechnology, 2021,64(14): 56-62.

[115]高尚,李天潤,郎鴻業,等.工件旋轉法磨削硅片的亞表面損傷深度預 測[J].光學精密工程,2022,30(17):2077-2087. GAO Shang,LI Tianrun,LANG Hongye,et al.Prediction for subsurface damage depth of silicon wafers in workpiece rotational grinding [J]. Optics and Precision Engineering,2022,30(17): 2077- 2087.

[116]TAO HF,LIU YH, ZHAO D W, et al. Undeformed chip width nonuniformity modeling and surface roughness prediction in wafer selfrotational grindingprocess[J].TribologyInternational,222,71: 107547.

[117]ZHANG Y,KANG R K, GAO S,et al. Anew model of grit cutig depth in wafer rotational grinding considering theeffect of the grinding wheel,workpiece characteristics,and grinding parameters [J].Precis Eng,2021,72: 461-468.

[118]SUNJL, CHEN P,QIN F,et al. Modelling and experimental study of roughness in silicon wafer self-rotating grinding [J].Precis Eng, 2018, 51: 625-637.

[119]TAO HF,LIU Y H, ZHAO D W,et al. The material removal and surface generation mechanism in ultra-precision grinding of silicon wafers[J]. Int JMech Sci,2022,222:107240.

[120]HUANG B T, LI C H, ZHANG Y B, et al. Advances in fabrication of ceramic corundum abrasivesbased on sol-gel process [J]. Chinese Journal of Aeronautics,2021,34(6): 1-17.

[121]凌順志,墨洪磊,汪忠喜,等.磨料尺寸對固結金剛石聚集體磨料墊研 磨石英玻璃加工性能的影響[J].金剛石與磨料磨具工程,2017,37(5): 12-18. LING Shunzhi,MO Honglei, WANG Zhongxi, et al. Effectof abrasive sizes on processing characteristics of fixed diamond aggregations pad lapping quartz glass [J]. Diamond amp; Abrasives Engineering,2017,37(5): 12-18.

[122]沈琦.多晶金剛石磨粒的制備和加工性能[D].南京:南京航空航天 大學,2017. SHEN Qi. Preparation and machining performance of aggregated diamond abrasive[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.

[123]唐超.硅基聚集體金剛石磨粒的制備與性能評價[D].南京:南京航 空航天大學,2020. TANGChao.Preparationand performance of silicon-based aggregated diamond abrasives[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2020.

[124]BUTLER-SMITHP,AXINTED,DAINEM,etal.Mechanismsof surface response to overlapped abrasive grits of controlled shapes and positions:An analysis of ductile and britle materials [J].Cirp AnnManuf Techn,2014,63(1):321-324.

[125]GUO B, ZHAO Q L,FANG X Y. Precision grinding of optical glass with laser micro-structured coarse-grained diamond wheels[J].JMater Process Tech,2014,214(5):1045-1051.

[126]黃家駿,何鈺鵬,謝晉,等.放電熱與交變切削力耦合的金剛石磨粒修 整研究[J].機械工程學報,2022,58(15):144-151. HUANG Jiajun,HE Quanpeng,XIEJin, et al. Diamond grain truncating technologycoupledwith discharge thermal and alternatingcuttingforce [J].Journal of Mechanical Engineering,2022,58(15):144-151.

[127]郭銳斌.金剛石砂輪微磨粒修平修尖工藝及應用研究[D].廣州:華 南理工大學,2018. GUO Ruibin. Study on the technique of truncating and tapering of diamond grain for grinding wheel and itsapplication[D]. Guangzhou: South China UniversityofTechnology,2018.

[128]黃武,蘇宏華,張昆,等.單顆釬焊金剛石磨粒磨損試驗研究[J].金剛 石與磨料磨具工程,2016,36(2):15-18. HUANG Wu, SU Honghua, ZHANG Kun, et al. Wear experiment of single brazed diamond abrasive[J]. Diamond amp; Abrasives Engineeing, 2016,36(2): 15-18.

作者簡介

通信作者:張彥彬,男,1990年生,博士,教授,博士研究生導師。主要研究方向:綠色磨削與精密加工、智能制造與高端裝備、智能農機裝備。

E-mail:zhangyanbinl_qdlg@163.com

(編輯:趙興昊)

Research progress on abrasive geometry modeling and application

PENG Fei1, ZHANG Yanbin', ZHANG Rukang2,CUI Xin1, XU Peiming2,DONG Lan4,ZHANG Xiaotian4, SONG Xuelei5, LI Changhe16

(1. KeyLabofIndustrial Fluid Energy Conservationand Polution Control,MinistryofEducation, Qingdao University ofTechnology, Qingdao 266520,Shandong,China) (2. Qingdao HKC Microelectronics Co.,Ltd.,Qingdao 266288, Shandong, China) (3. Taishan Sports Industry Group Co.,Ltd., Dezhou 25360o, Shandong, China) (4.College ofElectromechanical Engineering,Qingdao Binhai University,Qingdao 266555,Shandong,China) (5.Qingdao Yuyuan New Materials Co.,Ltd.,Qingdao 266217,Shandong,China) (6. Qingdao Jimo Qingli Intelligent Manufacturing Industry Research Institute,Qingdao26620o,Shandong,China)

AbstractSignificance: Abrasives are recognized as indispensable in precision machining,and their role in processing ritical components has been firmly established. Geometric modeling of abrasives is regarded as essential for quantitativecharacterizationofmaterialremoval,as itexertssubstantial influenceonthe predictionofmachining forces, thermal effects,and surface roughness.However,consistent guidanceonmodeling methodologies remains lacking,and controllable fabrication of abrasive geometries has persisted as a critical challenge requiring further investigation. Progress: Abrasives are regarded as fundamental to precision machining and are considered essential for modeling material removal. In prior studies,abrasive geometries have typically been simplified as regular forms,such as spheres, cones,frustums,andtruncated polyhedra.However,actual abrasives predominantly exhibit irrgular polyhedralshapes, and their interaction mechanisms are not fuly represented by these simplified models.To address this limitation, a random plane-cuting method has been developed onthe basis of prior studies.In this method,realistic abrasive geometries ar generatedbyintersectingregular shapes with randomlyoriented planes,enablingquantitative analysisof material removal adsurface roughnes.Basedonabrasive retention,abrasive machining is commonlycategorizedas fixedor free abrasive procesing. In free abrasive machining,material is removed from the workpiece surface by free abrasives, primarily through lappng and polishing. By contrast,fixed abrasive machining is performed by fixing abrasives within a bond matrix.Although substantial diferences exist between these methods in machining mechanisms,abrasive utilization,and fluid requirements,the accuracyofabrasive shape modeling has been shownto exertasignificant influece on grinding force,heat generation,and surface roughnessAbrasive preparation is defined as a shape-forming processin which raw abrasivesare processed into defined geometries,sizes,and properties to satisfy various industrial requirements. Grinding whel dressing is recognized as a critical operation to maintain the profile,dimensional accuracy,and surface topography of the grinding wheel, and comprises two primary steps: truing and sharpening. Among these steps, micron-scale truing is conducted atthe abrasive level,representing abrasive shaping.At present,abrasive shaping methodsbased on laser processng and thermochemical graphitization removal are regarded asmajor research focuses. Conclusions and Prospects: Currently,abrasive geometriesare primarilymodeledas spheres,cones,frustums,and polyhedral. Abrasive modelinghas been extensively applied in precision finishing processes utilizing both freeand fixed abrasives.A range of abrasive manufacturing and shaping techniques has been investigated in recent studies, encompassing micro-mould replication, transfer-assisted screen printing,laser cuting,laser micro-structuring,anddresing methods basedonthe combined action of discharge heat and alternating cuting forces.Anew perspective has been introduced through artificial intelligence-based abrasive modeling,and thedevelopmentof intellgentsystems integrating domain knowledgeanddatashouldbeprioritizedin futureresearch.Furthermore,pixel-levelrecognitionofmultiple targetabrasives in imaging data can be achieved through artificial inteligence algorithms.The integrationofartificial intellgence with laser sintering and 3D printing is expected to enable precise fabrication of abrasives with controllable geometries.The implementation ofonline monitoring techniques facilitates accurate assessment of abrasive wear during machining,thereby providing data to support tool design and optimization.

Keywordsabrasive particle geometry modeling;freeabrasives;fixed abrasives;controlled preparation of abrasive particles;abrasive particle shaping

主站蜘蛛池模板: 免费jjzz在在线播放国产| 成人在线天堂| 色综合天天操| 亚洲精品福利网站| 无码网站免费观看| 欧美自拍另类欧美综合图区| 亚洲精品片911| 99久久人妻精品免费二区| 国产精品亚洲五月天高清| 无码精品国产VA在线观看DVD| 狠狠综合久久久久综| 91po国产在线精品免费观看| 国产女人爽到高潮的免费视频| 亚洲综合日韩精品| 亚洲欧美日韩综合二区三区| 麻豆国产精品一二三在线观看| 亚洲成aⅴ人在线观看| 成人在线亚洲| 成人午夜网址| 91在线国内在线播放老师| 欧美专区在线观看| 国产成年无码AⅤ片在线| 国产18在线| 丰满少妇αⅴ无码区| 久久青草免费91观看| 国产三级国产精品国产普男人 | 久久黄色视频影| 麻豆精品视频在线原创| 免费三A级毛片视频| 在线国产资源| 成年免费在线观看| 91精品专区| 五月丁香在线视频| 老司机久久精品视频| 九九视频免费在线观看| 激情综合图区| 呦女亚洲一区精品| 欧美成一级| 中文字幕av无码不卡免费| 国产成人精品男人的天堂| 无码国产伊人| 欧美成人怡春院在线激情| 狼友视频国产精品首页| 久爱午夜精品免费视频| 成人免费午夜视频| 国产日本一线在线观看免费| 午夜精品福利影院| 欧美日韩精品综合在线一区| 亚洲熟妇AV日韩熟妇在线| 久久久受www免费人成| 国产成人高清精品免费5388| 激情五月婷婷综合网| 波多野结衣的av一区二区三区| 天天操精品| 国产精品流白浆在线观看| 91最新精品视频发布页| 自拍欧美亚洲| 毛片免费在线视频| 毛片一区二区在线看| 无码高清专区| 久草视频中文| 一级毛片基地| 亚洲中文字幕精品| 伊人久久大香线蕉aⅴ色| 久青草网站| 国产成人夜色91| 在线高清亚洲精品二区| 亚洲Va中文字幕久久一区 | 波多野结衣在线se| 亚洲日韩国产精品综合在线观看| 国产福利小视频高清在线观看| 老司机精品99在线播放| 亚洲VA中文字幕| 在线毛片网站| 伊人久久福利中文字幕| 日韩欧美中文字幕在线韩免费| 九色综合伊人久久富二代| 天堂岛国av无码免费无禁网站| 就去色综合| 亚洲日产2021三区在线| 久视频免费精品6| 国产精品视频久|