【摘要】 子宮內膜癌(EC)是一種常見的婦科惡性腫瘤,預后相對較好,但其表觀遺傳致癌機制和治療方案的進展仍有待探索。近年來越來越多的研究顯示,腺瘤性息肉病大腸桿菌(APC)基因可作為有前景的診斷和治療生物標志物。APC是典型的染色質重塑相關抑癌基因,其突變和功能異常已被報道與多種EC的發生與治療耐藥性有關。EC的發病機制可能涉及Wnt通路(生物體內一種調節器官發生、胚胎發育、組織穩態和腫瘤發生的細胞信號通路)異常、環境因素、遺傳異常、高雌激素水平、異常錯配修復以及DNA和微RNA的異常表達,基于其致癌機制選擇相應的治療策略可能有助于提高EC治療的效果,文章主要綜述了APC在早期EC癌變中的作用,并總結了其在EC治療中的意義,為相關研究提供新的視角。
【關鍵詞】 APC基因;子宮內膜癌;Wnt通路;癌變機制
The role of adenomatous polyposis coli gene in carcinogenesis and treatment of early-stage
endometrial cancer
WU Qiang1, LI Wenle2
(1.The First Clinical School of Guangdong Medical University, Zhanjiang 524000, China; 2. Department of Obstetrics and Gynecology, Guangdong Medical University Affiliated Hospital, Zhanjiang 524000, China)
Corresponding author: LI Wenle, E-mail: safety11@foxmail.com
【Abstract】 Endometrial cancer (EC) is a common gynecological malignant tumor with relatively good prognosis. However, the progress in its epigenetic carcinogenic mechanisms and treatment regimens remains to be explored. In recent years, more and more studies have shown that the adenomatous polyposis coli (APC) gene can serve as a promising diagnostic and therapeutic biomarker. APC is a typical tumor-suppressor gene related to chromatin remodeling. Its mutations and functional abnormalities have been reported to be associated with the occurrence and therapeutic drug resistance of various types of EC. The carcinogenic mechanisms of EC may involve abnormalities in the Wnt pathway (a cell signaling pathway in organisms that regulates organogenesis, embryonic development, tissue homeostasis, and tumorigenesis), environmental factors, genetic abnormalities, high estrogen levels, abnormal mismatch repair, and abnormal expression of DNA and microRNAs. Selecting corresponding treatment strategies based on its carcinogenic mechanisms may help improve the efficacy of EC treatment. In this article, the role of APC in the carcinogenesis of early-stage EC was mainly reviewed and its significance in EC treatment was summarized, providing novel perspective for relevant research.
【Key words】 APC gene; Endometrial cancer; Wnt pathway; Carcinogenic mechanism
子宮內膜癌(endometrial cancer,EC)是女性生殖系統最常見的惡性癌,近年來發病率已超過宮頸癌及卵巢癌,居女性三大婦科惡性腫瘤的首位。隨著生活水平的提高,肥胖患病率不斷增加,與肥胖相關的EC發病率也隨之上升[1]。其治療一直是婦科腫瘤學的重大挑戰,雖然大多數患者表現為分化良好的低級別早期病變,但意外復發或轉移的案例仍時有發生,研究者對于預測復發以及治療敏感性的EC分子特征和相關基因改變的致癌機制仍知之甚少。因此,識別新的分子生物標志物和治療靶點勢在必行。EC分為子宮內膜樣癌和非子宮內膜樣癌,后者以漿液性癌為代表,已有研究顯示,p53突變發生在90%的病例中,并可能參與早期癌變[2-3];相比之下,子宮內膜樣癌異質性更強,腺瘤性息肉病大腸桿菌(adenomatous polyposis coli,APC)/β-catenin信號通路被激活在特定情況下可以導致其發生,但還需要其他途徑參與,現仍缺乏足夠一致的分子改變來解釋大多數病例[4]。然而,一些遺傳缺陷和表觀遺傳變化已被發現在早期EC癌變中發揮著關鍵作用,尤其是抑癌基因APC,作為Wnt信號通路的組成部分,其失活在EC的發生、發展和治療中具有顯著影響。本文介紹APC在EC的發生、發展和治療中的作用,旨在為EC靶向治療開發更有效的治療策略提供理論基礎。
1 APC與Wnt信號通路
1991年Groden等[5]首次報道APC基因與家族性腺瘤性息肉病相關,并確定了其位于染色體5q21,后續研究顯示APC基因可能是結直腸癌的驅動突變基因[6],其突變往往導致截短蛋白產生和剩余蛋白重要區域丟失,與各種惡性癌、神經系統疾病以及智力障礙有關[2]。APC基因由跨越21個外顯子的8 535個堿基對組成,內含5個啟動子區域:1A和1B。啟動子1A高甲基化存在于人體正常胃黏膜及多種惡性腫瘤中,啟動子1B甲基化的研究報道較少[3, 7-8]。APC基因產物是一種相對分子量為312 kDa的多結構域蛋白質,根據N端區域重復序列位置的不同,APC蛋白可以分為2種:APC和APC2[9]。前者在大多數胎兒組織和成人體上皮細胞中表達較多,參與Wnt信號通路等多種細胞生理過程,與包括β-catenin、Axin、C端結合蛋白(C-terminal binding protein,CtBP)、Asefs、含IQ
標記的GTPase激活蛋白1(IQ-motif-containing GTPase activation protein 1,IQGAP1)、EB1和微管中的各種蛋白質結合進行復雜的相互作用[9-10]。同時,通過與微管、肌動蛋白絲和中間絲3者相互作用實現對細胞骨架的調節,在細胞遷移、黏附、極性、mRNA和細胞器運輸、分裂和形態發生等各個方面發揮重要作用[11-12]。此外,在細胞核的非細胞骨架活動中,APC也能與DNA相互作用,對有絲分裂和核糖體RNA的合成進行調節[13];APC失活會導致有絲分裂中紡錘體功能的喪失以及基因組和染色體的不穩定,降低細胞周期蛋白(cyclin-dependent kinase,CDK)復合物的活性,阻止細胞周期從G0/G1到S期[14]。APC2主要在大腦中高水平表達,通過促進微管動力學來控制樹突發育,在神經系統發育中發揮重要作用,其異常表達與各種神經系統疾病和智力障礙有關[4, 15-16]。兩者在Wnt信號傳導中的作用相似,但EC中的基因改變僅在前者常見[17]。目前,APC基因突變已在多種惡性腫瘤中被發現,與EC相關的APC突變約60%發生在突變簇區域,并導致蛋白質C末端截短,與β-catenin和微管結合所需的結構域丟失,從而導致不受控制的細胞遷移、染色體不穩定和細胞黏附喪失[9, 18]。由此可見,APC基因可通過包括Wnt信號通路等多種多樣的途徑調節細胞的增殖和相互作用,并影響早期EC的發生、發展。
Wnt基因于1992年由Nusse等[19]首次證實在腫瘤發生和胚胎發育中發揮關鍵作用;Wnt家族由至少19種分泌型糖蛋白組成,具有保守的22~24個半胱氨酸殘基,其中包括Wnt10a和Wnt10b蛋白,它們與特異性Wnt受體結合調節器官發生、胚胎發育、組織穩態和癌發生,在腸道、皮膚、免疫系統、骨骼中均較活躍[20-22]。在經典Wnt信號通路中,APC可與支架蛋白Axin、絲氨酸/蘇氨酸激酶GSK3b和CK1以及β-catenin一起形成軸蛋白復合物,磷酸化β-catenin,并促進其泛素化和降解[2];當APC失活導致該通路過度激活時,水解β-catenin的軸蛋白復合物無法形成,導致其核積累并與轉錄因子相互作用,激活Wnt靶基因的TCF依賴性轉錄,包括細胞周期蛋白D1和MYC等基因的轉錄,使其他細胞功能異常化,如細胞遷移、黏附、增殖和凋亡等,從而導致細胞的異常增殖與癌變[23-24]。除此之外,在正常Wnt通路中,APC還可通過3種機制抑制β-catenin的核轉移:第一,APC促使β-catenin從細胞核輸出,并降低β-catenin轉錄活性[25];第二,APC通過與β-catenin結合阻斷與TCF的相互作用[26];第三,APC可與MYC增強子處的TrCP結合促進轉錄抑制子CtBP介導的Wnt靶基因抑制[27-28]。除了對Wnt通路的影響,APC功能缺陷還會加速EC相關基因PTEN的喪失,后者與Wnt信號傳導之間存在協同效應[29]。總之,APC基因作為抑癌因子在多種細胞通路中發揮著不可或缺的作用,對組織穩態的維持非常重要,是EC發生的理想突變靶點。
2 EC與Wnt信號通路
迄今為止,尚無報告表明Wnt信號失調會導致EC,但Wnt信號通路通過多種途徑參與了EC細胞的增殖,其在組織穩態調節中的核心作用已在EC中得到廣泛研究。研究者發現Wnt通路異常主要與子宮內膜樣癌相關,如Palacios等[30]研究了40例EC中β-和γ-catenin的免疫組織化學表達模式,發現β-catenin核積聚占25%,γ-catenin核積聚占7%,均與子宮內膜樣癌表型相關,但未觀察到其與微衛星不穩定性(microsatellite instability,MSI)之間的相關性。Fukuchi等[31]報道76例EC中有38%存在β-catenin核積聚,也與子宮內膜樣表型相關。Chen等[32]對EC組織中Wnt10a和Wnt10b基因的檢測發現EC組織特別是子宮內膜樣癌中Wnt10b的表達高于增生和正常樣本,且Wnt10b過表達增強了β-catenin和c-myc的表達,并降低了APC的表達,從而導致細胞增殖。Ismail等[33]分析了13例多囊卵巢綜合征患者卵母細胞樣本中Wnt通路基因,發現APC和β-catenin在患者和對照組的卵母細胞中的表達水平相似,但Wnt1和GSK3β基因在PCOS患者的卵母細胞中的表達均升高,因此,Wnt信號傳導通路控制著女性生殖系統及卵巢顆粒細胞中的激素活性,EC與多囊卵巢綜合征等卵巢功能失調有關,Wnt通路也可能通過影響卵巢的功能從而間接導致EC的癌變。
研究者發現,雌激素通過激活Wnt信號通路促進子宮內膜增殖,黃體酮則相反,這可能是EC癌變的理論機制之一[34]。研究發現,雌激素可上調CyclinD3表達并參與EC發生、發展[35],但王茂彩等[36]的研究發現,CyclinD3的陽性表達與ER、PR表達無關。因此,雌激素可能通過Wnt信號通路引起的非受體改變來促進子宮內膜的增殖。Nei等[37]觀察到在人子宮內膜中,β-catenin的核積累在月經周期增殖期明顯增強,而在分泌期主要分布在細胞質和細胞膜上;當使用腺病毒SFRP2抑制Wnt信號通路后,雌二醇誘導的增殖被抑制[38]。在另外2項研究中,通過在小鼠飲用水中施用鋰會導致GSK3b活性抑制,從而激活Wnt信號傳導,β-catenin表達減少,子宮內膜明顯增殖[39-40]。但單純Wnt信號通路的激活可能在早期子宮內膜增生中發揮重要作用,但不一定導致惡性轉化,而雌激素持續刺激產生的下游效應協同Wnt通路成員體細胞突變導致的聯合作用,可能是引發子宮內膜全面惡性轉化所必需的[41]。約85%分化良好的I型EC病例檢測出經典Wnt通路成員的體細胞突變及核β-catenin染色,且這些突變有可能以劑量和環境依賴的方式引發EC[42]。Jeong等[43]利用Pgr-Cre驅動子宮內膜及肌層中β-catenin和典型Wnt信號傳導的致癌激活,觀察到腺上皮細胞增殖增強、6周齡子宮內膜增生以及雌激素信號傳導缺陷,但不會導致EC。因此,單一因素可能并不足以致癌,來自體內外的過量雌激素也只有在特定條件下才可能會導致EC的發生,這也與細胞內Wnt信號通路的異常激活密切相關,兩者共同作用導致子宮內膜過度增生并向惡性轉化。
3 APC基因與早期EC癌變
APC基因在Wnt信號通路的功能喪失和獲得突變已在EC中得以證實,其中APC基因突變、雜合性缺失或啟動子甲基化最可能導致Wnt通路的異常激活、靶基因轉錄異常和癌變發生。DNA甲基化中表觀突變的積累是生物衰老和惡性腫瘤發展中共有的分子現象,APC基因異常甲基化已在約22%~77.4%的EC中得到證實,與MSI相關,而在正常的子宮內膜中暫未發現[44-45]。Nimura等[46]對10例早期無癥狀EC進行遺傳分析,1例檢測到WNT信號通路的APC調節因子存在致病變異。為了進一步研究其在EC發生中的作用,Ignatov等[47]對43例正常子宮內膜、21例單純性增生、17例非典型增生和86例EC的研究進行檢測,發現APC基因甲基化發生在非典型增生和EC中,發生率從不典型增生到EC逐漸增加,在早期EC(FIGOⅠ和Ⅱ)中達到最高水平(77.4%),且早期EC中APC甲基化水平與Ki-67表達之間存在顯著正相關,在晚期EC(FIGOⅢ和Ⅳ)則逐步下降至24.2%。這說明APC甲基化主要出現在EC癌變早期,可能有利于增強細胞的潛在增殖活性,在子宮內膜從不典型增生到癌變的轉變期間賦予其生長優勢;而在子宮內膜不典型增生和癌中未檢測到APC蛋白表達水平的降低,提示APC異常甲基化不一定導致APC基因失活,可能通過獨立的機制促進EC的發生,還需要未來的研究進一步證實。綜上所述,目前的研究支持APC基因在早期EC癌變中具有重要意義,其異常甲基化導致的功能改變可能并不依賴APC基因的表達產物APC蛋白,但可引起子宮內膜細胞增殖活性過強,從而促進惡性腫瘤的激活增殖和無限復制。
微RNA(microRNA,miRNA)失調所導致的抑癌基因失活正在成為EC發展中一種新型表觀遺傳沉默模式,據報道,在EC中過度表達的轉錄因子YinYang1(YY1)可通過與Eeste同源增強子2相互作用,介導組蛋白H3K27me3的甲基化,隨后募集于APC啟動子1A區導致其基因沉默,從而激活Wnt通路導致細胞增殖和癌變[48]。此外,miR-191也可通過下調易位蛋白TET1的表達引起APC的啟動子區域過度甲基化而失活[49]。APC基因雜合性丟失僅存在于少數EC中,Fujino等[50]在22例EC中只觀察到1例APC位點的雜合性缺失,而Jones等[51]在7種癌中未發現雜合性缺失。綜上所述,越來越多的轉錄因子被發現在EC中過度表達,并通過影響APC啟動子區域導致基因失活,從而激活Wnt信號通路引發細胞過度增殖,APC基因雜合性丟失也可能影響APC蛋白表達或功能改變,但在EC中的研究仍較少,未來還需要足夠樣本量的高質量研究。
目前仍尚不明確APC基因突變如何促進EC的發展。Moreno-Bueno等[45]報道了95例子宮內膜樣EC的APC突變分析數據,未發現APC基因突變;Song等[52]對99例EC中520個EC相關基因和來自TCGA的DNA序列數據進行了綜合分析,在99例標本中僅檢測出APC突變18例,其中錯義突變9例,截短突變4例,錯義突變和混合突變5例,在TCGA隊列的526個樣本中檢測到APC突變,其中包含42例錯義突變、13例截短突變、22例兩種突變混合、9例其他突變類型,免疫組化進一步證實了EC組織中APC表達降低。研究者發現,對于癌肉瘤,早發性EC患者出現APC非沉默突變的概率增加,尤其是非西班牙裔白人中,早發性EC患者出現非沉默APC突變的概率增加了2.68倍[53]。為了進一步了解APC突變對EC的作用,Arango等[54]通過在小鼠子宮肌層中誘導APC突變,觀察到明顯的子宮肌纖維損失。同樣,使用Pgr-Cre來驅動子宮內膜和肌層細胞中APC失活后,肌層缺陷也很明顯,還觀察到了子宮內膜增生和早期EC[55]。Tanwar等[56]在小鼠子宮內膜基質細胞中條件表達了APC的突變體等位基因(APCcKO),使其表達一種缺失β-catenin結合域的截斷形式APC,APC活性的缺失導致基質細胞轉分化為肌成纖維細胞表型,雌激素受體α表達的減少,最終顯示出內膜非典型增生和腺癌,這提示基質和上皮細胞的相互作用也在EC變中發揮著重要作用,僅內膜基質細胞中的APC缺失就足以導致EC發生;而在小鼠子宮間充質干細胞中表達β-catenin卻未觀察到癌變。APC突變與PTEN等位基因高突變率相關,PTEN等位基因突變在良性、無活性子宮內膜腺體中最低(0.7%),在腺癌中最高(36.9%),在黃體酮治療后顯著降低[57]。在APC表達缺失的EC中,β-catenin表達因此在細胞核中積累,而在APC染色呈陽性的EC中,β-catenin染色為膜陽性或細胞核陽性,這也表明APC截短突變可能并非調節EC中β-catenin核表達的唯一因素[58]。事實上,β-catenin的核表達與APC基因突變、雜合性缺失和啟動子甲基化均無明顯相關性[59]。關于APC在各種細胞系統中的亞細胞定位提示細胞頂膜中不成比例的APC以及APC的60S部分可能并不參與Wnt通路中β-catenin的降解,即使是剩余的20S部分也與Disheveled蛋白沒有顯著混合[60]。因此,APC導致EC癌變的機制可能還涉及非β-catenin相關功能的喪失,APC基因突變,尤其是錯義突變,在早期EC中更為常見,通過影響表達產物或其他基因突變在早期EC的發生發展中起著一定作用,早期EC的致癌過程除了涉及Wnt信號介導的子宮上皮-間質相互作用,可能還有其他未知機制參與,APC在各種細胞系統中的作用錯綜復雜,這需要未來更進一步的研究證實。
4 APC與EC治療
APC通過影響EC的免疫微環境,在增強EC治療反應方面發揮重要作用。研究表明,APC作為新的治療標志物可以輔助識別可能受益于免疫治療的MSI型EC患者,APC突變與MSI引起的細胞內突變均可通過提高癌細胞突變負荷、程序性死亡配體1(programmed cell death-ligand 1,PD-L1)的表達和淋巴細胞的浸潤介導了患者對PD1/PD-L1等免疫治療的敏感性,攜帶APC突變尤其是錯義突變的患者可能對免疫治療更敏感,預后生存期也更長[52, 61-62]。因此,APC在EC各類新型免疫治療方式的選擇中起著重要作用,EC術后應進一步檢測病理標本中APC基因突變情況,為更有效的免疫治療奠定基礎。
Wnt信號通路被激活可能導致EC,但目前關于Wnt通路抑制劑在EC中的研究較少。由于表觀遺傳變化可能破壞癌細胞的免疫原性和免疫識別機制,影響抗原的加工和呈遞,因此有助于找出治療的重要分子靶點,在預測抗癌藥物反應性及提高化學治療效果等方面意義重大[63-66]。目前,許多甲基化抑制劑已被用作EC抗癌藥物嘗試,例如,Yanokura等[67]在50例EC標本中檢測到12.0% CHFR異常高甲基化,并表明異常高甲基化在低分化(G3)腺癌中更為常見,這些異常的高甲基化和CHFR表達減少的EC細胞對紫杉烷類藥物具有高度敏感性,但在去甲基化后變得耐藥。近年Yang等[68]發現,使用DNA甲基化抑制劑和PD-L1免疫檢查點抑制劑的聯合療法比單獨阻斷任一途徑更有效地提高結直腸癌小鼠的生存率。因此,APC甲基化抑制劑可能是未來靶向治療的潛在研究方向。DNA低甲基化以組織特異性的方式影響腫瘤的發生,在特定情況下既可以促進腫瘤的發生,也可以抑制腫瘤的發生,適度的DNA低甲基化并不影響Apc基因雜合性缺失或Wnt通路,而通過與激活的Wnt通路協同作用促進細胞凋亡,這為基于DNA甲基化抑制劑的惡性腫瘤治療提供了新的思路[69]。Liu等[70]通過甲基化特異性PCR法檢測APC的甲基化狀態,并證明APC的啟動子甲基化狀態與DNA甲基化抑制劑5-aza-2c-脫氧胞苷治療后細胞生長下降有關,腫瘤明顯縮小。Li等[71]的研究也表明,5-aza-2c-脫氧胞苷可被用作APC基因甲基化的抑制劑,APC的甲基化促進了結腸癌細胞的增殖和侵襲能力,應用去甲基化藥物抑制APC基因的甲基化有助于結腸癌的治療。然而,甲基化抑制劑的缺點是它不具有序列特異性,可能會導致正常基因去甲基化和甲基化沉默的癌基因重新激活,因此,利用轉錄因子開發序列特異性去甲基化劑是未來重要的研究方向[72]。基于成簇規律間隔短回文重復(clustered regulatory interspaced short palindromic repeat,CRISPR)的表觀基因組修飾劑可有效使靶向DNA去甲基化,并通過多次細胞分裂維持表觀遺傳記憶[73]。使用CRISPR-dCas9對印記基因進行靶向去甲基化,可導致穩定、長期的母體小核核糖核蛋白多肽N(small nuclear ribonucleoprotein polypeptide N,SNRPN)基因表達,從而有利于治療基因相關疾病。Yang等[68]利用dCas9-SunTagTET1(一種靶向去甲基化融合蛋白)進行靶向p16啟動子去甲基化。Sun等[74]利用TRED-I(一種基于CRISPR/Cas9的基因特異性系統)靶向NLRC5啟動子的去甲基化,成功驅動主要組織相容性復合體(major histocompatibility complex,MHC)Ⅰ類抗原呈遞增加并加速CD8+ T細胞激活,提高了抗PD1抗體檢查點阻斷的療效。Albrecht等[75]使用dCas9-SunTag和TET1的催化結構域成功對擬南芥ROP蛋白結合活性因子(interactor of constitutive active ROPs 1,ICR1)基因進行靶向去甲基化,并觀察到了特異且穩定的效果。dCas9-TET1CD可以使人卵巢腺癌BG1細胞中的肝細胞核因子(hepatocyte nuclear factor,HNF)1A和β-1,4-甘露糖基糖蛋白4-β-N-乙酰葡糖氨基轉移酶[mannosyl(β-1,4-)-glycoprotein β-1,4-N-acetylglucosaminyltransferase 3,MGAT3]基因去甲基化,并使人宮頸癌HeLa和人膠質母細胞瘤T98G細胞系中含端粒重復序列的RNA(telomeric repeat-containing RNA,TERRA)去甲基化[76-77]。此外,使用dCas9TET1CD靶向R-脊椎蛋白3(R-spondin 3,RSPO3)啟動子DNA去甲基化被證實可抑制膽管癌的致瘤性[78];使用dCas13b-FTO對轉化生長因子-β1(transforming growth factor-β1,TGF-β1)m6A進行靶向特異性去甲基化,可增強Smad2信號通路活性,并促進骨骼肌細胞增殖[79];體外和體內研究均證明,dCas9-multiGCN4/scFv-TET1CD-sgZNF334載體系統對ZNF334靶向去甲基化是一種對結直腸癌的精確有效治療[80]。總之,表觀遺傳數據有助于找出治療的重要分子靶點,在預測抗癌藥物反應性及提高化學治療效果等方面意義重大,靶向去甲基化在多種惡性腫瘤治療中效果良好,但目前仍缺少在EC的報道。
生活方式的調節也是一種防治EC的重要方法,研究發現終身和近期體力活動均與非惡性乳腺組織中APC基因啟動子高甲基化呈負相關,表明體力活動對子宮內膜的保護作用可能與包括APC甲基化在內的表觀遺傳變化有關[77]。因此,高危EC患者進行適當的運動對預防和治療可能是有益的。
5 結語和展望
EC癌變絕非單一因素作用的簡單過程,而是眾多復雜因素交織、共同驅動的結果。在這一復雜進程里,APC正逐漸展現出其關鍵價值,全方位參與EC的病因解析與治療實踐中 。
從核心機制看,APC在經典的Wnt信號通路中扮演“剎車”角色,可有效抑制通路過度激活,維持細胞增殖與分化的平衡;在細胞層面,它深度參與細胞間黏附,助力細胞維持有序排列與正常組織形態,同時對細胞骨架穩定起著重要作用,保障細胞生理活動的結構基礎。不僅如此,其在細胞周期調控與細胞凋亡誘導方面的潛在功能,也在被逐步挖掘——精準調控細胞周期進程,及時清除異常細胞,從源頭遏制癌變。
這些不斷涌現的新認知,為EC診療預防打開全新視野。在診斷上,監測APC相關分子標志物,能更早捕捉癌變信號;治療中,依據APC功能狀態,可針對性選擇干預策略,比如恢復APC正常功能以重塑抗癌免疫微環境,或結合其對細胞周期的影響設計靶向療法;預防領域,理解APC與生活方式、環境因素的交互作用,有望制定更精準的防癌方案。
不過,當前對APC的認知仍有諸多空白。比如,APC失活的表觀遺傳學(表觀遺傳)調控網絡如何精準運作,不同EC亞型中APC作用是否存在差異,以及APC與其他致癌通路的協同或拮抗關系怎樣,這些都亟待深入探索。只有持續解碼APC在EC癌變與治療中的奧秘,才能真正將其潛力轉化為臨床獲益,推動EC診療邁向精準化、個體化新高度,為患者帶來更多生存希望。
利益沖突聲明:本研究未受到企業、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻
[1] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[2] FANG X, SVITKINA T M. Adenomatous polyposis coli (APC) in cell migration[J]. Eur J Cell Biol, 2022, 101(3): 151228. DOI: 10.1016/j.ejcb.2022.151228.
[3] LAMBERTZ S, BALLHAUSEN W G. Identification of an alternative 5’ untranslated region of the adenomatous polyposis coli gene[J]. Hum Genet, 1993, 90(6): 650-652. DOI: 10.1007/BF00202484.
[4] GONZALEZ L, ALVAREZ J, WEINSTEIN E, et al. Familial adenomatous polyposis in an adolescent with coexisting schizophrenia: treatment strategies and implications[J]. Mol Genet Genomic Med, 2015, 3(5): 391-395. DOI: 10.1002/mgg3.114.
[5] GRODEN J, THLIVERIS A, SAMOWITZ W, et al. Identification and characterization of the familial adenomatous polyposis coli gene[J]. Cell, 1991, 66(3): 589-600. DOI: 10.1016/0092-8674(81)90021-0.
[6] BANNO K, YANOKURA M, SUSUMU N, et al. Relationship of the aberrant DNA hypermethylation of cancer-related genes with carcinogenesis of endometrial cancer[J]. Oncol Rep, 2006,
16(6): 1189-1196.
[7] THLIVERIS A, ALBERTSEN H, TUOHY T, et al. Long-range physical map and deletion characterization of the 1100-kb NotI restriction fragment harboring the APC gene[J]. Genomics, 1996, 34(2): 268-270. DOI: 10.1006/geno.1996.0285.
[8] TSUCHIYA T, TAMURA G, SATO K, et al. Distinct methylation patterns of two APC gene promoters in normal and cancerous gastric epithelia[J]. Oncogene, 2000, 19(32): 3642-3646. DOI: 10.1038/sj.onc.1203704.
[9] AOKI K, TAKETO M M. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene[J]. J Cell Sci, 2007, 120(Pt 19): 3327-3335. DOI: 10.1242/jcs.03485.
[10] MIDGLEY C A, WHITE S, HOWITT R, et al. APC expression in normal human tissues[J]. J Pathol, 1997, 181(4): 426-433. DOI: 10.1002/(SICI)1096-9896(199704)181: 4lt;426: : AID-PATH768gt;3.0.CO; 2-T.
[11] DOGTEROM M, KOENDERINK G H. Actin-microtubule crosstalk in cell biology[J]. Nat Rev Mol Cell Biol, 2019,
20(1): 38-54. DOI: 10.1038/s41580-018-0067-1.
[12] NELSON S, N?THKE I S. Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance[J]. J Cell Sci, 2013, 126(Pt 4): 873-877. DOI: 10.1242/jcs.100479.
[13] NEUFELD K L, WHITE R L. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein[J]. Proc Natl Acad Sci USA, 1997, 94(7): 3034-3039. DOI: 10.1073/pnas.94.7.3034.
[14] BAEG G H, MATSUMINE A, KURODA T, et al. The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase[J]. EMBO J, 1995, 14(22): 5618-5625. DOI: 10.1002/j.1460-2075.1995.tb00249.x.
[15] VAN ES J H, KIRKPATRICK C, VAN DE WETERING M, et al. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor[J]. Curr Biol, 1999, 9(2): 105-108. DOI: 10.1016/s0960-9822(99)80024-4.
[16] KAHN O I, SCH?TZLE P, VAN DE WILLIGE D, et al. APC2 controls dendrite development by promoting microtubule dynamics[J]. Nat Commun, 2018, 9(1): 2773. DOI: 10.1038/s41467-018-05124-5.
[17] ABBOTT J, N?THKE I S. The adenomatous polyposis coli protein 30 years on[J]. Semin Cell Dev Biol, 2023, 150/151: 28-34. DOI: 10.1016/j.semcdb.2023.04.004.
[18] BéROUD C, SOUSSI T. APC gene: database of germline and somatic mutations in human tumors and cell lines[J]. Nucleic Acids Res, 1996, 24(1): 121-124. DOI: 10.1093/nar/24.1.121.
[19] NUSSE R. The Wnt gene family in tumorigenesis and in normal development[J]. J Steroid Biochem Mol Biol, 1992, 43(1/2/3): 9-12. DOI: 10.1016/0960-0760(92)90181-h.
[20] KATOH M. WNT and FGF gene clusters (review)[J]. Int J Oncol, 2002, 21(6): 1269-1273.
[21] WEND P, WEND K, KRUM S A, et al. The role of WNT10B in physiology and disease[J]. Acta Physiol (Oxf), 2012, 204(1): 34-51. DOI: 10.1111/j.1748-1716.2011.02296.x.
[22] SCHAEFER K N, PEIFER M. Wnt/beta-catenin signaling regulation and a role for biomolecular condensates[J]. Dev Cell, 2019, 48(4): 429-444. DOI: 10.1016/j.devcel.2019.01.025.
[23] TETSU O, MCCORMICK F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells[J]. Nature, 1999, 398(6726): 422-426. DOI: 10.1038/18884.
[24] HE T C, SPARKS A B, RAGO C, et al. Identification of c-MYC as a target of the APC pathway[J]. Science, 1998, 281(5382): 1509-1512. DOI: 10.1126/science.281.5382.1509.
[25] ROSIN-ARBESFELD R, CLIFFE A, BRABLETZ T, et al. Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription[J]. EMBO J, 2003, 22(5): 1101-1113. DOI: 10.1093/emboj/cdg105.
[26] NEUFELD K L, ZHANG F, CULLEN B R, et al. APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export[J]. EMBO Rep, 2000, 1(6): 519-523. DOI: 10.1093/embo-reports/kvd117.
[27] BIENZ M, HAMADA F. Adenomatous polyposis coli proteins and cell adhesion[J]. Curr Opin Cell Biol, 2004, 16(5): 528-535. DOI: 10.1016/j.ceb.2004.08.001.
[28] MARKOWSKA A, PAWA?OWSKA M, LUBIN J, et al. Signalling pathways in endometrial cancer[J]. Contemp Oncol (Pozn), 2014, 18(3): 143-148. DOI: 10.5114/wo.2014.
43154.
[29] VAN DER ZEE M, JIA Y, WANG Y, et al. Alterations in Wnt-β-catenin and Pten signalling play distinct roles in endometrial cancer initiation and progression[J]. J Pathol, 2013, 230(1): 48-58. DOI: 10.1002/path.4160.
[30] PALACIOS J, CATASúS L, MORENO-BUENO G, et al. β- And γ-catenin expression in endometrial carcinoma. Relationship with clinicopathological features and microsatellite instability[J]. Virchows Arch, 2001, 438(5): 464-469. DOI: 10.1007/s004280000371.
[31] FUKUCHI T, SAKAMOTO M, TSUDA H, et al. Beta-catenin mutation in carcinoma of the uterine endometrium[J]. Cancer Res, 1998, 58(16): 3526-3528.
[32] CHEN H, WANG Y, XUE F. Expression and the clinical significance of Wnt10a and Wnt10b in endometrial cancer are associated with the Wnt/β-catenin pathway[J]. Oncol Rep, 2013, 29(2): 507-514. DOI: 10.3892/or.2012.2126.
[33] ISMAIL A B, NAJI M’S, NEBIH ?, et al. The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients[J]. Zygote, 2022, 30(4): 536-542. DOI: 10.1017/S0967199422000028.
[34] WANG Y, VAN DER ZEE M, FODDE R, et al. Wnt/Β-catenin and sex hormone signaling in endometrial homeostasis and cancer[J]. Oncotarget, 2010, 1(7): 674-684. DOI: 10.18632/oncotarget.201.
[35] 袁丹, 劉蒙蒙, 周正平, 等. 雌激素對人子宮內膜樣癌Ishikawa細胞中p57kip2、Cyclin D1、CDK4表達及形態變化影響的研究[J]. 現代婦產科進展, 2018, 27(4): 249-254. DOI: 10.13283/j.cnki.xdfckjz.2018.04.002.
YUAN D, LIU M M, ZHOU Z P, et al. Effects of estrogen on the expressions of p57kip2, Cyclin D1, CDK4 and morphological changes in Ishikawa cells in human endometrial carcinoma[J]. Prog Obstet Gynecol, 2018, 27(4): 249-254. DOI: 10.13283/j.cnki.xdfckjz.2018.04.002.
[36] 王茂彩, 李驍, 王敏儀, 等. Cyclin D3在子宮內膜癌組織中的表達及其意義[J]. 新醫學, 2020, 51(11): 877-880. DOI: 10.3969/j.issn.0253-9802.2020.11.014.
WANG M C, LI X, WANG M Y, et al. Expression and significance of cyclin D3 in the endometrial carcinoma[J]. J New Med, 2020, 51(11): 877-880. DOI: 10.3969/j.issn.0253-9802.2020.11.014.
[37] NEI H, SAITO T, YAMASAKI H, et al. Nuclear localization of beta-catenin in normal and carcinogenic endometrium[J]. Mol Carcinog, 1999, 25(3): 207-218.
[38] HOU Y F, YUAN S T, LI H C, et al. ERbeta exerts multiple stimulative effects on human breast carcinoma cells[J]. Oncogene, 2004, 23(34): 5799-5806. DOI: 10.1038/sj.onc.1207765.
[39] GUNIN A G, EMELIANOV V U, MIRONKIN I U, et al. Lithium treatment enhances estradiol-induced proliferation and hyperplasia formation in the uterus of mice[J]. Eur J Obstet Gynecol Reprod Biol, 2004, 114(1): 83-91. DOI: 10.1016/j.ejogrb.2003.09.023.
[40] POLOTSKY A J, ZHU L, SANTORO N, et al. Lithium chloride treatment induces epithelial cell proliferation in xenografted human endometrium[J]. Hum Reprod, 2009, 24(8): 1960-1967. DOI: 10.1093/humrep/dep115.
[41] SCHLOSSHAUER P W, PIROG E C, LEVINE R L, et al. Mutational analysis of the CTNNB1 and APC genes in uterine endometrioid carcinoma[J]. Mod Pathol, 2000, 13(10): 1066-1071. DOI: 10.1038/modpathol.3880196.
[42] SAEGUSA M, OKAYASU I. Frequent nuclear beta-catenin accumulation and associated mutations in endometrioid-type endometrial and ovarian carcinomas with squamous differentiation[J]. J Pathol, 2001, 194(1): 59-67. DOI: 10.1002/path.856.
[43] JEONG J W, LEE H S, FRANCO H L, et al. Beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus[J]. Oncogene, 2009, 28(1): 31-40. DOI: 10.1038/onc.2008.363.
[44] ZYSMAN M, SAKA A, MILLAR A, et al. Methylation of adenomatous polyposis coli in endometrial cancer occurs more frequently in tumors with microsatellite instability phenotype[J]. Cancer Res, 2002, 62(13): 3663-3666.
[45] MORENO-BUENO G, HARDISSON D, SáNCHEZ C, et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer[J]. Oncogene, 2002, 21(52): 7981-7990. DOI: 10.1038/sj.onc.1205924.
[46] NIMURA R, KONDO E, YOSHIDA K, et al. Cancer-associated gene analysis of cervical cytology samples and liquid-based cytology significantly improve endometrial cancer diagnosis sensitivity[J]. Oncol Lett, 2022, 24(4): 376. DOI: 10.3892/ol.2022.13496.
[47] IGNATOV A, BISCHOFF J, IGNATOV T, et al. APC promoter hypermethylation is an early event in endometrial tumorigenesis[J]. Cancer Sci, 2010, 101(2): 321-327. DOI: 10.1111/j.1349-7006.2009.01397.x.
[48] YANG Y, ZHOU L, LU L, et al. A novel miR-193a-5p-YY1-APC regulatory axis in human endometrioid endometrial adenocarcinoma[J]. Oncogene, 2013, 32(29): 3432-3442. DOI: 10.1038/onc.2012.360.
[49] YANG C, OTA-KUROGI N, IKEDA K, et al. microRNA-191 regulates endometrial cancer cell growth via TET1-mediated epigenetic modulation of APC[J]. J Biochem, 2020, 168(1): 7-14. DOI: 10.1093/jb/mvaa014.
[50] FUJINO T, RISINGER J I, COLLINS N K, et al. Allelotype of endometrial carcinoma[J]. Cancer Res, 1994, 54(16): 4294-4298.
[51] JONES M H, NAKAMURA Y, KOI S, et al. Allelotype of uterine cancer by analysis of RFLP and microsatellite polymorphisms: frequent loss of heterozygosity on chromosome arms 3p, 9q, 10q, and 17p[J]. Genes Chromosom Cancer, 1994, 9(2): 119-123. DOI: 10.1002/gcc.2870090207.
[52] SONG Y, HUANG J, WANG K, et al. To identify adenomatous polyposis coli gene mutation as a predictive marker of endometrial cancer immunotherapy[J]. Front Cell Dev Biol, 2022, 10: 935650. DOI: 10.3389/fcell.2022.935650.
[53] CHOI J, HOLOWATYJ A N, DU M, et al. Distinct genomic landscapes in early-onset and late-onset endometrial cancer[J].
JCO Precis Oncol, 2022, 6: e2100401. DOI: 10.1200/PO.
21.00401.
[54] ARANGO N A, KOBAYASHI A, WANG Y, et al. A mesenchymal perspective of Müllerian duct differentiation and regression in Amhr2-lacZ mice[J]. Mol Reprod Dev, 2008, 75(7): 1154-1162. DOI: 10.1002/mrd.20858.
[55] BHOWMICK N A, NEILSON E G, MOSES H L. Stromal fibroblasts in cancer initiation and progression[J]. Nature, 2004, 432(7015): 332-337. DOI: 10.1038/nature03096.
[56] TANWAR P S, LEE H J, ZHANG L, et al. Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice[J]. Biol Reprod, 2009, 81(3): 545-552. DOI: 10.1095/biolreprod.108.075648.
[57] REID K, CAMACHO-VANEGAS O, PANDYA D, et al. Deep molecular tracking over the 12-yr development of endometrial cancer from hyperplasia in a single patient[J]. Cold Spring Harb Mol Case Stud, 2023, 9(4): a006311. DOI: 10.1101/mcs.a006311.
[58] KARIOLA R, ABDEL-RAHMAN W M, OLLIKAINEN M, et al. APC and beta-catenin protein expression patterns in HNPCC-related endometrial and colorectal cancers[J]. Fam Cancer, 2005, 4(2): 187-190. DOI: 10.1007/s10689-004-6130-4.
[59] PIJNENBORG J A, KISTERS N, VAN ENGELAND M, et al.
APC, beta-catenin, and E-cadherin and the development of recurrent endometrial carcinoma[J]. Int J Gynecol Cancer, 2004, 14(5): 947-956. DOI: 10.1111/j.1048-891X.2004.
014534.x.
[60] REINACHER-SCHICK A, GUMBINER B M. Apical membrane localization of the adenomatous polyposis coli tumor suppressor protein and subcellular distribution of the beta-catenin destruction complex in polarized epithelial cells[J]. J Cell Biol, 2001, 152(3): 491-502. DOI: 10.1083/jcb.152.3.491.
[61] LEFOL C, SOHIER E, BAUDET C, et al. Acquired somatic MMR deficiency is a major cause of MSI tumor in patients suspected for “Lynch-like syndrome” including young patients[J].
Eur J Hum Genet, 2021, 29(3): 482-488. DOI: 10.1038/s41431-020-00778-6.
[62] ARORA E, MASAB M, MITTAR P, et al. Role of immune checkpoint inhibitors in advanced or recurrent endometrial cancer[J]. Cureus, 2018, 10(4): e2521. DOI: 10.7759/cureus.2521.
[63] MCDERMOTT D, LEBBé C, HODI F S, et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma[J]. Cancer Treat Rev, 2014, 40(9): 1056-1064. DOI: 10.1016/j.ctrv.2014.06.012.
[64] MAIO M, GROB J J, AAMDAL S, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial[J]. J Clin Oncol, 2015, 33(10): 1191-1196. DOI: 10.1200/JCO.2014.56.6018.
[65] WU X, CHEN H, XU H. The genomic landscape of human immune-mediated diseases[J]. J Hum Genet, 2015, 60(11): 675-681. DOI: 10.1038/jhg.2015.99.
[66] SIGALOTTI L, FRATTA E, CORAL S, et al. Epigenetic drugs as immunomodulators for combination therapies in solid tumors[J]. Pharmacol Ther, 2014, 142(3): 339-350. DOI: 10.1016/j.pharmthera.2013.12.015.
[67] YANOKURA M, BANNO K, KAWAGUCHI M, et al. Relationship of aberrant DNA hypermethylation of CHFR with sensitivity to taxanes in endometrial cancer[J]. Oncol Rep, 2007, 17(1): 41-48.
[68] YANG L, CHEN X, LEE C, et al. Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer[J]. J Exp Clin Cancer Res, 2023, 42(1): 113. DOI: 10.1186/s13046-023-02689-y.
[69] DUAN X, HUANG Y, CHEN X, et al. Moderate DNA hypomethylation suppresses intestinal tumorigenesis by promoting
caspase-3 expression and apoptosis[J]. Oncogenesis, 2021,
10(5): 38. DOI: 10.1038/s41389-021-00328-9.
[70] LIU B, SONG J, LUAN J, et al. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer[J]. Exp Biol Med (Maywood), 2016, 241(14): 1531-1539. DOI: 10.1177/1535370216645211.
[71] LI B Q, LIU P P, ZHANG C H. Correlation between the methylation of APC gene promoter and colon cancer[J]. Oncol Lett, 2017, 14(2): 2315-2319. DOI: 10.3892/ol.2017.6455.
[72] MURAKI Y, BANNO K, YANOKURA M, et al. Epigenetic DNA hypermethylation: clinical applications in endometrial cancer(review)[J]. Oncol Rep, 2009, 22(5): 967-972. DOI: 10.3892/or_00000523.
[73] YAHSI B, PALAZ F, DINCER P. Applications of CRISPR epigenome editors in tumor immunology and autoimmunity[J]. ACS Synth Biol, 2024, 13(2): 413-427. DOI: 10.1021/acssynbio.3c00524.
[74] SUN X, WATANABE T, ODA Y, et al. Targeted demethylation and activation of NLRC5 augment cancer immunogenicity through MHC class I[J]. Proc Natl Acad Sci USA, 2024, 121(6):
e2310821121. DOI: 10.1073/pnas.2310821121.
[75] ALBRECHT C, RAJARAM N, BROCHE J, et al. Locus-specific and stable DNA demethylation at the H19/IGF2 ICR1 by epigenome editing using a dCas9-SunTag system and the catalytic domain of TET1[J]. Genes (Basel), 2024, 15(1): 80. DOI: 10.3390/genes15010080.
[76] JOSIPOVI? G, TADI? V, KLASI? M, et al. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system[J]. Nucleic Acids Res, 2019,
47(18): 9637-9657. DOI: 10.1093/nar/gkz709.
[77] LE BERRE G, HOSSARD V, RIOU J F, et al. Repression of TERRA expression by subtelomeric DNA methylation is dependent on NRF1 binding[J]. Int J Mol Sci, 2019, 20(11): 2791. DOI: 10.3390/ijms20112791.
[78] WU G, WANG D, XIONG F, et al. Upregulation of RSPO3 via targeted promoter DNA demethylation inhibits the progression of cholangiocarcinoma[J]. Clin Epigenetics, 2023, 15(1): 177. DOI: 10.1186/s13148-023-01592-9.
[79] DENG K, LIU Z, LI X, et al. Targeted demethylation of the TGFβ1 mRNA promotes myoblast proliferation via activating the SMAD2 signaling pathway[J]. Cells, 2023, 12(7): 1005. DOI: 10.3390/cells12071005.
[80] YANG B, TANG H, WANG N, et al. Targeted DNA demethylation of the ZNF334 promoter inhibits colorectal cancer growth[J]. Cell Death Dis, 2023, 14(3): 210. DOI: 10.1038/
s41419-023-05743-x.
(責任編輯:林燕薇)