
















中圖分類號:TB333文獻標志碼:A
文章編號:1673-3851(2025)07-0469-11
引用格式:,.海藻酸鈉中空纖維馬達的設計、運動調控及染料降解應用[J].浙江理工大學學報(自然科學),2025,53(4):469-479.
Abstract: Coaxial fibers were prepared by coaxial wet spinning of sodium alginate (SA) and SA/Fe3O4 loaded with Fe3O4 ,and SA@Pt and SA/Fe3O4@Pt hollow fiber motors were obtained by wet chemically depositing platinum ( Pt ) nanoparticles onto the inner wall of the hollow fibers. The morphology and structural composition of the hollow fiber motors were characterized using SEM, XRD,and FTIR. The motion behavior of the holow fiber motors was regulated,and their eficacy on pollutant degradation was evaluated. The results demonstrated that
hollow fiber motors containing Pt nanoparticles could achieve autonomous motion in H2O2 . The motion speed of
could reach 2.1mm/s as the mass fraction of H2O2 was 2% , showing good motion performance. Furthermore, the motion modes of the SA (20
hollow fiber motors could be modulated by adjusting the shape of the ports and the length of the hollow fibers,resulting in both linear and rotational movement patterns. When guided by an external magnetic field,the SA/Fe3O4@Pt motor could move along a predetermined path, including forming complex trajectories such as 'ZSTU′ , showcasing its versatile movement and high precision control. Finally,the SA/Fe3O4@Pt achieved a 93.4% and 87.9% degradation rate of malachite green and Rhodamine B within 120mins ,with consistent performance over three cycles. This study provides new insights into the design and application of sodium alginate-based hollow fiber motors for eficient polutant degradation.
Key words: sodium alginate;holow fiber motors; coaxial spining; magnetic drive; bubble drivecontaminant degradation
0 引言
微納米馬達(Micro/nanomotors,MNM)是一種可以將化學能(化學燃料)或外部刺激(光、電、磁和超聲波等)轉化為機械能的微小裝置[1。通過化學燃料驅動的MNM具有運動自主性,在生物醫學[2-4]、貨物運輸[3-5]和環境修復[6]等方面具有潛在的應用前景。在推進機制方面,自推進的MNM可以通過多種方式產生動力,如氣泡驅動[7-8]、Marangoni效應[9]、自擴散[10-11]等,其中氣泡驅動是最常見的一種方法[12]。在氣泡驅動中,管狀MNM因其特殊的結構,通常具有更快的運動速度(高達每秒數百微米)[13],可以在很大程度上提高其與污染物的接觸概率和傳質效率,因此更適用于環境修復,如污染物降解[13]、重金屬離子去除[14]和微塑料清除[15]
管狀MNM具有獨特的中空結構,有利于氣泡的成核、生長和噴出,還具有較大的比表面積,因而提高了其在環境處理中的化學降解和物理吸附效果。目前,制備中空纖維的主要方法有靜電紡絲[14]、化學交聯法[16]和同軸濕法紡絲[17-19]。Zhang等[14]采用靜電紡絲制備了外徑為 860nm 的二氧化錳 MnO2 )中空MNM,該MNM在高濃度的 H2O2 (204號中可以實現 203μm/s 的運動速度,能有效去除重金屬離子。同軸濕法紡絲是將兩種不同的紡絲溶液通過同軸針頭注射到凝固浴中固化成絲,然后通過滾筒收集以及后處理得到同軸纖維,這種同軸纖維通常是核殼結構,并表現出獨特的性能[20]。相對于靜電紡絲,同軸濕法紡絲制備的材料具有更高的力學性能,并且同軸濕法紡絲的操作簡單、對材料的要求不高,適合大規模制備。……