中圖分類號:U463.6 文獻標識碼:A 文章編號:1003-8639(2025)06-0060-0
TheApplication and Challenges of Artificial Intelligence in Autonomous Driving Technology Tian Fenglin
(Zhengzhou Professonal Technical Institute of Electronics Information,Zhengzhou ,China)
【Abstract】With the continuous advancement of artificial intellgence technology,autonomous driving has become animportantcomponentofintellgenttransportationsystems.Thisarticlefocusesontheapplicationofartificial intelligence in autonomous driving technology,systematically analyzes theimplementationpathsand challengesof key technologiessuch asperception technology,decision-making and path planning,control and execution systems,and explorestypicalapplicationscenariossuchasurbanroads,expressways,andunmanneddelivery.The system performance was verified through multi-scenario experiments,and it was found that structured roads performed well but there were problems such as decreased perception accuracyand response delayin complex environments.Further analyze thechallenges from theaspects of technology,regulations and ethics,and propose response strategies such as multimodal fusionenhancement,\"simulation-realscene\"joint training,and phasedlegislation,providing theoretical references for the reliability improvement and large-scale application of autonomous driving technology.
【Keywords】artificial intelligence;autonomous driving;multi-sensor fusion;deep reinforcement learning; perception technology
0 引言
自動駕駛技術作為未來交通領域的重要發展方向,正從試驗室逐步邁向實際應用階段。隨著技術的持續突破,人工智能領域的深度學習、強化學習以及機器視覺等技術,為自動駕駛系統的智能化發展提供了有力支撐。本文將圍繞人工智能在自動駕駛技術中的應用展開深入探討,詳細闡述感知技術、決策與路徑規劃、控制系統等方面的實現方法,并分析其面臨的技術挑戰,以期為自動駕駛技術的進一步發展提供參考。
1人工智能在自動駕駛中的關鍵技術
自動駕駛系統架構示意如圖1所示。
1.1 感知技術

感知技術是自動駕駛系統的“感官神經”,其核心在于通過多模態傳感器融合實現對環境的精準感知。
目前,主流方案通常采用攝像頭、激光雷達LiDAR、毫米波雷達等多種傳感器構建冗余感知網絡。其中,攝像頭借助深度學習算法,如視覺目標檢測算法(YouOnlyLook Once,YOLO)、鳥瞰圖 算法(Bird's-eyeViewFormer,BEVFormer),能夠實現車道線識別、交通標志檢測以及行人姿態估計。激光雷達則通過點云分割技術(如PointPillars算法)構建高精度三維環境模型,可有效識別低反射率障礙物,例如黑色車輛。然而,多傳感器融合過程中面臨著數據時空同步與校準的難題。為解決這一問題,部分企業采用前融合(如特斯拉占用網絡OccupancyNetwork)與后融合(如谷歌旗下子公司Waymo的多視圖融合Multi-viewFusion)混合架構,并通過注意力機制動態加權不同傳感器的置信度。
1.2 決策與路徑規劃 ……p>