
關鍵詞 EA4T車軸;機器人磨拋;工藝優化;磨拋軌跡;離線編程
中圖分類號 TG580.6文獻標志碼A
文章編號 1006-852X(2025)02-0266-08
DOI碼 10.13394/j.cnki.jgszz.2024.0187
收稿日期 2024-11-30修回日期2025-01-18 文
高速鐵路是國家重要的基礎設施,而動車組車軸制造技術是國家工業水平和科研實力的體現之一[1-2]。EA4T車軸是動車組車體承重的重要部件,其性能直接影響行車安全性與可靠性,是技術要求高、生產難度大的尖端產品[3-4]。EA4T車軸服役時,其軸肩部位反復受力且存在應力集中問題5,因此需要在生產過程中對軸肩部位進行精密磨拋,嚴格控制其表面粗糙度和材料去除深度。磨拋質量直接影響車軸的服役性能[]
目前EA4T車軸軸肩部位的磨拋方式主要為人工手動打磨,存在作業強度大、環境差、磨拋質量受操作人員技能水平影響大等問題7。EA4T車軸具有尺寸長、質量大等特點,難以采用傳統數控機床進行裝夾和磨拋[8]。工業機器人具有靈活性好、可靠性高等優勢,通過機器人末端夾持柔性磨頭的方式,配合優化的磨拋工藝和合理的磨拋軌跡,可實現大尺寸車軸軸肩部位的自動隨形磨拋[。
近年來,國內外學者對車軸磨拋工藝的研究有了較大進展。LORANG等[1研究了不同打磨參數對車軸表面粗糙度和微觀結構的影響,并給出了最佳車軸壽命對應的打磨參數。馮中立等1針對標準動車組車軸卸荷槽部位,探究了砂紙目數與車軸表面粗糙度和表面殘余應力之間的關系,發現采用180目砂紙與轉速為 300r/min 的拋光參數可以保證車軸表面穩定的打磨性能。在車軸磨拋軌跡規劃方面,BULZAK等[采用數控斜軋機對空心鐵路車軸鍛件進行了磨拋軌跡規劃研究,通過對斜軋機編程獲得了與仿真一致的刀具運動軌跡。韓杰[13采用機器人打磨工作站對動車組箱體進行了打磨軌跡研究,發現下刀方式為切線式并從工件加工邊緣的中心位置下刀,可有效避免過切現象。
綜上所述,目前在車軸磨拋工藝方面大多只研究了不同工藝參數對磨拋效果的影響規律,而最優磨拋工藝參數基本通過人工經驗直接獲得,針對兼顧表面粗糙度和材料去除深度綜合需求的EA4T鋼多目標磨拋工藝優化方法研究較少。目前EA4T車軸機器人磨拋多采用手動示教的編程方式,而采用離線編程軟件自動規劃磨拋軌跡是今后的發展趨勢,因此亟須開發適應實際應用場景的EA4T車軸機器人磨拋工藝優化和軌跡規劃方法。
本研究中采用機器人智能磨拋系統對EA4T鋼試件進行磨拋正交試驗,以表面粗糙度和材料去除深度最小化為綜合優化目標對正交試驗結果進行多目標優化;然后采用離線編程方法規劃EA4T車軸軸肩部位磨拋軌跡并生成機器人加工程序;最后在控制系統中輸人最優磨拋工藝參數并導人磨拋軌跡程序,以實現EA4T車軸機器人自動高質高效磨拋加工。
1EA4T鋼磨拋工藝試驗
1.1試驗條件與方案
由于EA4T車軸尺寸較長、質量較大,如直接在軸肩部位進行機器人磨拋工藝試驗,后續測量表面粗糙度和材料去除深度時將存在一定困難,因此選擇與車軸材料相同的EA4T鋼平板試件進行磨拋工藝正交試驗,平板試件尺寸為 150mm×63mm×9mm ,如圖1所示。根據標準EN13261—2003,EA4T鋼中各元素的質量分數如表1所示,磨拋前表面粗糙度 Ragt;1μm 。


采用如圖2所示的機器人智能磨拋系統進行EA4T鋼磨拋工藝正交試驗和EA4T車軸磨拋軌跡驗證。磨拋系統由庫卡 KR210R2700 機器人、盈連科技3002HD力位補償器、配套主軸電機、專用工裝夾具、砂紙圈磨頭等組成。其中,砂紙圈磨頭目數可更換,形狀支持非標定制,能夠適應不同軸肩部位的隨形磨拋。通過機器人示教器和力位補償器的協同,系統可實現進給速度、磨拋力、主軸轉速的穩定控制。

1.2試驗參數確定
基于田口法設計四因素四水平的EA4T鋼磨拋正交試驗,試驗次序與參數如表2所示。根據EA4T車軸磨拋表面粗糙度 Ra?0.4μm 的質量控制要求,結合人工磨拋經驗[14],選用砂紙圈磨頭目數( A )的水平為 A1- 120#、 A2-240 # A3-320 #、 A4=400 #。

基于人工磨拋EA4T車軸時采用測力儀測量磨拋力大致范圍為 12~30N ,設定磨拋力( (B )的水平為 B1 115N,B2=20N,B3=25N,B4=30N,C ,根據EA4T車軸磨拋效率要求,同時考慮到磨拋軌跡疊壓[15],設定進給速度( ?C) 的水平為 C1-20mm/s ! C2=30mm/s 一 C3–40mm/s. C4?50mm/s 。根據人工磨拋經驗,設定主軸轉速( D )的水平為 D1-750r/min 、 D2?1500r/min 、 D3?2250r/min 、D4=3000r/min 。
1.3磨拋質量檢測方法
EA4T鋼平板試件磨拋完成后,需要對磨拋后試件的表面粗糙度和材料去除深度進行測量,具體檢測方法如圖3所示。表面粗糙度測量采用手持式表面粗糙度測量儀,測量精度為 0.001μm ,取磨拋區域內10個測量點的平均值作為表面粗糙度結果。材料去除深度的測量方法為選用精密分析天平(測量精度為 0.001g ))分別測量磨拋前后EA4T鋼試件的質量,然后根據EA4T鋼密度 ρ=7.85g/cm3 和磨拋區域面積 s 為 26cm2 從而計算出材料去除深度。

2試驗結果與工藝優化
2.1正交試驗結果分析
根據上述EA4T鋼磨拋試驗方案和檢測方法,得到正交試驗結果如表3所示,誤差列用于進行誤差分析。16組正交試驗中,表面粗糙度 Ra 變化范圍為 0.309~ 0.978μm ,材料去除深度變化范圍為
(204號結果表明:通過優化磨拋工藝參數組合能夠保證上述指標滿足EA4T車軸質量控制要求。
由于砂紙圈磨頭只能購買到特定型號,因此需要提前確定能夠達到指標要求的磨頭目數。另外,合理調控磨拋過程中的磨拋力和進給速度,也能夠獲得較為光直平整的磨拋表面。

2.2方差分析與顯著性檢驗
為分析不同磨拋工藝參數對EA4T鋼試件磨拋后表面粗糙度和材料去除深度的影響程度,引入方分析和顯著性檢驗來判斷影響程度的差異,結果分別如表4和表5所示。其中 F 值表示方差分析檢驗統計量,如顯著性水平在 0.1~0.5 ,則證明該磨拋工藝參數對試驗結果具有顯著性影響[。各磨拋工藝參數對EA4T鋼磨拋表面粗糙度的影響程度主次順序為磨頭目數( A ) gt; 主軸轉速
進給速度
磨拋力
,其中磨頭目數對表面粗糙度的影響最為顯著;各磨拋工藝參數對材料去除深度的影響程度主次順序為主軸轉速
磨頭目數 (A)gt; 進給速度 (C)gt; 磨拋力 Ξ(B) ,其中主軸轉速對材料去除深度的影響最為顯著。


2.3磨拋工藝參數優化
熵值法是廣泛應用于多目標優化的方法,其基本原理是指標變化程度越大,對應的熵值越小;指標離散程度越大,其權重系數越大[]。本研究中采用熵值法對EA4T車軸磨拋表面粗糙度和材料去除深度進行多目標優化,首先對數據進行規范化處理,然后計算各指標熵值并確定相應的權重系數,將表面粗糙度與材料去除深度轉化為綜合評分值進行優化,獲得具有最小表面粗糙度及材料去除深度的磨拋工藝參數。所涉及的計算公式如下:





式中: λi* 為第 i 次試驗的規范化結果; λi 為第 i 次試驗的原始結果; λmax 為所有試驗結果的最大值, λmin 為所有試驗結果的最小值; ?m 為試驗次數,且 m=16;Ej 為目標熵值; wj 為目標權重; n 為評價指標數,且 n=2 Si 為基于熵值法的綜合評分; Yij 為標準化后的指標值,其核心作用是消除量綱差異,確保后續熵值計算和權重分配的客觀性。
基于正交試驗結果,通過式(1)~式(4)計算得到表面粗糙度與材料去除深度的熵值和權重,求解其綜合評分,結果如表6所示。
對表6中所得的綜合評分值進行極差分析,得到各因素對評價指標的影響趨勢,根據式(5)~式(7)進行極差計算,所得結果如表7所示。


Rj=max{k1,k2,k3,k4}-min{k1,k2,k3,k4}
式中, Sji 為 i 水平下第 j 個因素的綜合評分值; Kj 為各因素在 i 水平下的綜合評分之和; kj 為 Kj 的平均值;i 為水平數,且 i=4;j 為因素數,且 j=4;Rj 為極差。

根據極差分析表,以表面粗糙度及材料去除深度綜合評分最小為優化目標,選取各組參數均值最低的水平,確定EA4T車軸機器人磨拋最佳工藝參數組合方案為 A4B1C4D1 ,即磨頭目數為 400#. 、磨拋力為 15N, 進給速度為 50mm/s 、主軸轉速為 750r/min 。采用該最優磨拋工藝參數組合進行EA4T鋼磨拋試驗驗證,得到磨拋后表面粗糙度 Ra 為 0.338μm 、材料去除深度 h 為 1.67μm ,有效提升了磨拋表面質量。
3機器人磨拋軌跡規劃
3.1磨拋軌跡離線編程
EA4T鋼磨拋工藝制定后,采用離線編程方法規劃EA4T車軸軸肩部位的機器人磨拋軌跡,具體流程如圖4所示,主要步驟如下所述。
第1步,在任務界面將EA4T車軸三維模型導人機器人離線編程軟件,選擇待磨拋的軸肩過渡圓弧部位,設定磨拋工具型號尺寸與實際磨頭相符,設置步進量等路徑參數后生成軸肩部位的曲面磨拋路徑。
第2步,在工具模塊導人機器人末端恒力控制器和主軸電機三維模型,建立機器人法蘭坐標系并添加TCP工位坐標系,導出工具文件以完成末端磨拋工具建模。
第3步,在工作站模塊導入庫卡KR210R2700機器人和底座模型,調整位置使其與實際安裝位置一致,設定Home位置和工作站配置,導出機器人工作站文件以完成工作站建模。
第4步,在設備界面載入機器人工作站并分配工序,調整車軸相對于機器人工作站的位置,優化機器人各軸的旋轉類型等其他參數,進而保證機器人磨拋軌跡無干涉、無奇異、全可達。
3.2車軸磨拋仿真與試驗
根據上述方法規劃EA4T車軸機器人磨拋軌跡后,在離線編程軟件中載人后處理文件,選定工藝為KukaDefaultProcess,在軟件中運行3段EA4T車軸軸肩部位的機器人磨拋軌跡,如圖5所示。
磨拋軌跡仿真運行無誤后,生成機器人加工程序SRC文件并導人機器人示教器的Programmain文件夾。在控制系統中輸入最優磨拋工藝參數對應的磨拋力(15N)、進給速度( 50mm/s )和主軸轉速( 750r/min ),自動運行程序以完成機器人磨拋軌跡試驗,如圖6所示。試驗表明,離線編程方法規劃的EA4T車軸機器人磨拋仿真軌跡與試驗軌跡完全重合,驗證了磨拋軌跡規劃的合理性。采用EA4T車軸最優磨拋工藝參數配合磨拋軌跡規劃方法,機器人響應迅速且運行穩定,磨拋效率大幅提高,可為EA4T車軸實際生產帶來便利。
4結論
采用自主搭建的機器人智能磨拋系統,對EA4T鋼試件進行了四因素四水平的機器人磨拋正交試驗,對試驗結果進行了多目標磨拋工藝參數優化,并采用離線編程方法規劃了EA4T車軸機器人磨拋軌跡,采用優化后的工藝參數和規劃的磨拋軌跡進行了EA4T車軸磨拋試驗驗證,得出以下主要結論:
(1)砂紙圈磨頭目數對EA4T車軸磨拋表面粗糙度的影響程度最大,需要選定合適的磨頭目數以獲得特定的表面粗糙度;主軸轉速對材料去除深度的影響程度最大,適當降低主軸轉速可以獲得較小的材料去除深度。
(2)以最小表面粗糙度和最小材料去除深度為綜合評價指標,熵值法優化后的EA4T車軸機器人磨拋工藝參數組合為磨頭目數 400#. ,磨拋力 15N 、進給速度 50mm/s 、主軸轉速 750r/min ,該參數組合下磨拋表面粗糙度 Ra 為 0.338μm 、材料去除深度 h 為 1.67μm 完全符合指標要求。
(3)采用離線編程方法規劃的EA4T車軸軸肩部位的機器人磨拋軌跡能夠導人機器人穩定運行,配合最優磨拋工藝參數組合,能夠實現EA4T車軸軸肩部位的自動磨拋。
參考文獻:
[1]徐鋒,章武林,杜永強,等.EA4T車軸不同加工工藝表面完整性分 析[J].表面技術,2017,46(12):277-282. XUFeng,ZHANG Wulin,DU Yongqiang,et al.Analysisof surface integrity of EA4T axle beingprocessed in different technologies [J]. Surface Technology,2017,46(12): 277-282.
[2] WANGF,LIUZ,XUEPC,etal.High-speedrailwaydevelopment and its impact on urban economy and population: A case study of nine provincesalongthe Yellow River,China[J].Sustainable Cities and Society,2022,87:104172.
[3] 趙文杰.高速列車車軸鋼EA4T循環本構模型及有限元實現[D].長 沙:湖南大學,2021. ZHAO Wenjie.Cyclic constitutive model of high-speed railway train axle steel EA4T and finite element implementation[D]. Changsha: Hunan University, 2021.
[4] LIH,ZHANGJW,WUSC,etal.Corrosion fatigue mechanismand life prediction of railway axle EA4T steel exposed to artificial rainwater [J] EngineeringFailure Analysis,2022,138:106319.
[5] 靳智超,梁紅琴,盧純,等.考慮車輪多邊形的動車組車軸疲勞壽命預 測[J].中國機械工程,2024,35(7):1299-1307. JIN Zhichao,LIANG Hongqin,LU Chun,et al.Fatigue life predictionof multiple unit axle considering wheel polygon [J].China Mechanical Engineering,2024,35(7):1299-1307.
[6] UNALO,MALEKI E,KARADEMIRI, etal.Effects of conventional shot peening,severe shot peening,re-shot peeningand precised grinding operations on fatigue performance of AISI 1o5O railway axle steel[J]. International Journal ofFatigue,2022,155:106613.
[7] ZHUYF,YANG MK,ZHOU XG.Research on simulation and optimization of production line of train wagon axle [C]/o20 IEEE International Conference on Mechatronics and Automation (ICMA). Beijing, China.IEEE,2020: 542-546.
[8] 李行,張繼旺,徐俊生,等.缺陷對 EA4T車軸鋼疲勞性能的影響[J]. 西南交通大學學報,2021,56(3):627-633. LIHang,ZHANG Jiwang,XUJunsheng, etal.Effectof defecton fatigue 2021,56(3): 627-633.
[9]BUERKLE A, EATON W, AL-YACOUB A, et al. Towards industrial robotsas a service (IRaaS):Flexibility,usability,safety and business models [J].Roboticsand Computer-Integrated Manufacturing,2023,81: 102484.
[10]LORANG X, CHEYNET Y, FERAUD P, et al. A study on lifetime of a railway axle subjected to grinding[J].Procedia Engineering,2018,213: 255-261.
[11]馮中立,蒲磊,楊文賢,等.表面加工工藝對動車組車軸表面性能的影 響[J].工具技術,2023,57(7):105-111. FENG Zhongli,PU LeiYANG Wenxian,et al.Influence of surface processing technology on surface performance of EMU axle [J].Tool Engineering,2023,57(7): 105-111.
[12]BULZAK T,PATER Z, TOMCZAK J, et al. Study of CNC skew rolling of hollow rail axleswith a mandrel[J].Archives of Civil and Mechanical Engineering,2024,24(3):145.
[13]韓杰.動車軸箱體柔性打磨技術研究[J].機車車輛工藝,2022(3):19- 22. HANJie.Research of automatic flexible grinding techniques for axle box bodies on EMUs [J].Locomotive amp; Rolling Stock Technology,2022(3): 19-22.
[14]山榮成,王睿,蔡衛星,等.不同加工工藝對 EA4T車軸表面性能的影 響[J].工具技術,2018,52(10):79-83. SHAN Rongcheng, WANG Rui, CAI Weixing,et al. Influence of diferent processng technology on surface performance of EA4T axle [J]. Tool Engineering,2018,52(10):79-83.
[15]孫國艷,賈興民,程妍.磨削工藝對列車車軸表面粗糙度及加工應力的 影響[J].金屬加工(冷加工),2024(6):28-32. SUN Guoyan, JIA Xingmin, CHENG Yan.The influence of grinding technology on the surface roughness and machining stress of train axles [J]. Metal Working(Metal Cutting),2024(6): 28-32.
[16]楊柳,王建彬,徐慧敏,等.基于正交試驗的工業純鈦研磨工藝研究[J]. 現代制造工程,2021(8):95-100. YANG Liu, WANG Jianbin, XU Huimin, et al. Research on grinding process of commercial pure titanium based on orthogonal experiment [J]. Modern Manufacturing Engineering,2021(8): 95-100.
[17]鄧偉,宋仲模,雷基林,等.基于熵值法的鋁合金缸體低壓鑄造工藝多 目標優化[J].鑄造,2024,73(6):753-761. DENG Wei, SONG Zhongmo,LEI Jilin, et al. Multi-objective optimization of low-pressure casting process of aluminum alloy cylinder block based on entropy method[J].Foundry,2024,73(6): 753-761.
作者簡介
通信作者:張峰,1977年生,學士學位,正高級工程師,主要從事軌道車輛轉向架工藝工作。
E-mail: zhangfeng@cqsf.com
(編輯:趙興昊)
Research on process optimization and trajectory planning of EA4T axle robot grinding
ZHANG Feng1, FENG Zhongli1, XU Feng1, ZHANG Deming1, ZENG Xiangrui2,MA Jianwei2,ZHANG Shilei1
(1. CRRC Qingdao Sifang Co., Ltd., Qingdao 2660oo, Shandong, China ) (2.State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, DalianUniversity ofTechnology,Dalian116024,Liaoning,China)
AbstractObjectives: The EA4T axle is a critical load-bearing componentof electric multiple unit (EMU) train bodies,directly influencingoperationalsafetyandreliability.As a high-end product with stringent technical requirements and complex manufacturing processes,the shoulder position of the EA4T axle is stresed repeatedly and there is stress concentrationduring service.Consequentlyintheprocessofaxleproduction,itisnecessrytogrindtheaxleshoulder to contro itssurface roughnessandmaterialremoval depth.Current manual grinding methods forEA4Taxleshoulder suffer from high labor intensity,inconsistent surfacequality,and loweficiency.Inordertoeffectively breakthrough the current manual grinding dilemma ofthe EMUEA4Taxle, the implementation of flexible grinding using an industrial robotic intelligent grinding system equipped with a constant-force control device presents a feasible solution to replace manual operations andachieve automated processing. Therefre,it is essntialtocarryout researchon the grinding process ofEA4T steel components,and explore the grinding process methods that meet the surface quality requirements ofEA4Taxle machining.Combined withthe of-line programming method for EA4Taxle robot grinding trajectory,the axis shoulder grinding trajectory is plannedandtherobot machining program is generated torealize high-quality and eficient automatic grinding of the EA4Taxle by robot.Methods: Firstly,an independently developed robotic intelligent constant-force grinding system serves as the experimental platform. EA4T steel specimens with dimensions of 150mm×63mm×9mm are prepared as test pieces. Based on the quality control requirement that the surface roughness of the EA4T axle after grinding must not exceed 0.4μm ,and considering the actual situation of manual grinding process parameters,a Taguchi method-based orthogonal experiment with four factors and four levels is designed and implemented.In the experiment, a hand-held surface roughnessmeasuring instrument is used to measure the surface roughness after grinding,and a precision analytical balance is used to measure the weight of the specimen before and after grinding to calculate the material removal depth.Thus,the surface roughnessand the material removal depth of the specimen under diferent process parameters are obtained. Secondly,analysis of variance and significance testing are conducted to determine the significance level of the influence ofeach process parameter on the experimentalresults.The influenceof the gritsizeof grinding tools,grinding force,feedspeed,and spindle speedonthe surfaceroughessand materialremoval depth is analyzed.Then,bycalculating theentropyof each index to determine the weight coeficient, the surfaceroughnessand material removal depth in the experimental results ofeach groupareconverted into comprehensive score values for evaluation.The optimal grinding processparameter combination with minimum surface roughness and materialremoval depth is obtained throughcomprehensive score rangeanalysis.Finally,theof-line programming methodisemployed to establishavirtual modelof therobotic intellgent grinding system within therobotoff-line programming software.The 3D model of the EA4Taxle is imported into the virtual environment.Basedon the flexible grinding module at the end-effector,parameters including grinding head dimensions,end-effector tools,and trajectory configurations are defined. The robot machining system program SRC file is generated and subsequently transferred to the robot teach pendant.The grinding force,feed rate and spindle speed corresponding to the optimal grinding process parameters are entered into the control system. Physical grinding experiments are conducted on EA4T axle prototypes to validate the feasibility of the proposed grinding methodology. Results: Through the grinding orthogonal experiments and physical verification experiments,the follwing results are obtained. (1)Theorderof influence of grinding process parameters on the surface roughness of EA4T steel is: abrasive grit size gt; spindle speed gt; feed rate gt; grinding force, with abrasive grit size exhibiting the most significant impact on surface roughness.The order of influence of process parameters on material removal depth is spindle speed gt; abrasive grit size gt; feed rate gt; grinding force, with spindle speed being the most influential. (2) With the goal of minimizing the comprehensive score of surface roughness and material emoval depth,the optimized grinding parameter combination is selected by choosing the levels with the lowest mean values across all parameter groups. The selected parameters are brasive grit size 400# ,grinding force 15N ,feed rate 50mm/s ,and spindle speed 750r/min .Using this parameter combination,the post-grinding surface roughness reaches 0.338μm ,and the material removal depth is 1.67μm ,effectively improving surface quality while meeting specificationrequirements.(3)Theof-line programming methodis used toplan the grinding trajectory.The simulation and experiment trajectories of EA4T robot grinding completely coincide,realizing automatic grinding robot of the EA4T axle shoulder position without interference,singularities and with full reachability. Conclusions: The paper conducts experimental research on process optimization and trajectory planning for robotic intelligent grinding of the EA4T axle. Through orthogonal experiments combined with the entropy weight method,the influence paterns of grinding processes on quality are revealed.The optimal process parametercombination for minimizing surface roughnessand material removal depth is determined.The of-line programming method enables quick and accurate planning of a robot grinding trajectory that is non-interfering, non-singular and fully reachable.The proposed method improves grinding efficiency and surface quality,mets therequirements of grinding efficiency and surface qualityof EA4Taxle,and can be applied in actual production and processing,effectively breaking through the predicament of low efciency and poor consistency of EA4T axle.
Key wordsEA4T axle; robot grinding; process optimization; grinding trajectory; off-line programming