
中圖分類號:F259.2 文獻標志碼:A DOI: 10.13714/j.cnki.1002-3100.2025.08.002
Abstract:Co-distributionisanimportant waytoeffectivelysolvethe problems ofhighcostandloweficiencyinrurallogistics distibutio.troteveoupgdfecyeemetsiountyoadilglstispretas to co-distribution.Thisstudyconsiders minimizingthetotalcostas the goaltoestablishacounty,townand vilagelogistics c o- distribution model,anddesigatstageuristicagrittooltemodelitags.Inthsttage,ageneticagortwithidcoding methodisdesignedtodeterminethelocationandnumberoftowshipommondistributioncenters;inthesecondstage,aniproved brainstormingalgorithisproposedtooptimizethditributionpathsofthesecondlevelfortheproblemofmultiplecommondistribution centersintetownships;intethirdstage,amulatedanealingalgorithmisusedtodeteminethedistributionpathsfromthecounty levelcommontransitcenters tothetownshipcommondistrbutioncenters.Finall,themodelisanalzedincombinationwithpecific arithmetic examples to verifythe efectiveness ofthe county, township and vilage logistics co一distribution model.
KeyWords:commondistributionthstageheursticalgoritm;hbridoding;treelevellogistcintheountytowadvile
0引言
農村電商的迅速發展以及“快遞進村”工程的推進為農村經濟的發展注入了新的動力。然而,由于農村物流面臨著資源共享程度低、配送范圍廣、客戶分布分散以及配送路徑重復等挑戰,導致農村物流配送成本較高、配送時效性難以得到保證,成為了制約農村電商發展的瓶頸[14]。共同配送作為一種能夠降低農村物流配送成本、提高配送效率的模式是當前解決農村物流配送問題的有效策略[5]。
為了實現共同配送策略,需要建立對應的共同配送網絡。國內外關于共同配送網絡問題的研究成果主要集中在以下3個方面。第一,在路徑優化中,Liuetal.\"采用模擬退火算法,對冷鏈物流企業共同配送路徑問題進行了求解,結果表明共同配送能有效降低總成本和減少碳排放量。Zhang et al.8針對城市快遞多而頻導致的配送復雜問題,提出了城市快遞共同配送模式,設計改進的競爭決策算法進行求解,并通過算例證明了模型和算法的實用性。第二,在選址研究方面。Zhouetal提出了一種局部搜索與懲罰相結合的改進的K-means算法,對餐廳的共同配送中心進行了選址。He et al.1針對共同配送中心的選址問題,提出了改進的模糊TOPSIS算法,并通過實證和敏感性分析證實了算法的可行性。第三,為了避免單一約束造成的非最優決策,學者們逐漸將選址與路徑這兩類問題進行疊加,進行多層級配送分析。何馨韻等建立了多層級共同配送中心選址與路徑問題的整數規劃模型,并通過多階段算法完成了模型的求解。李珍萍等[2在研究奶制品共同配送選址-路徑優化問題時,采用三階段算法對考慮容量約束的兩層級物流共同配送選址-路徑問題的模型進行求解,并通過單獨配送與共同配送對比的算例驗證了模型和算法的合理性。
綜上,現有研究主要針對共同配送以及多層級選址與路徑問題展開研究,但是少有研究將兩者進行綜合分析。同時,部分學者將共同配送下多個配送中心簡單轉化為多個單配送中心處理,難以共享配送資源[3-14]。基于此,本文針對縣鄉村三級物流共同配送的問題展開研究,主要工作如下。一是設計了三階段啟發式算法對鄉鎮共同配送中心選址以及兩層級的車輛路徑問題進行求解。二是通過綜合考慮配送量、服務范圍以及配送費用等因素確定鄉鎮共同配送中心的位置與數量。三是針對多段編碼的方式,將插入算子以及變領域搜索策略融入頭腦風暴算法中降低求解的難度以及提高求解速度。
1問題描述與符號說明
1.1 問題描述
農村地區各物流企業進行獨立配送,存在配送資源難以共享以及路徑重復的問題,導致農村電商物流成本增加。為解決上述問題,多個物流企業可結成合作聯盟,構建如圖1所示的縣鄉村三級物流共同配送網絡。其由兩層級構成:第一層級為單個縣級共同中轉中心到鄉鎮多個共同配送中心之間的配送;第二層級為鄉鎮多個共同配送中心到多個村級客戶點之間的配送。在縣鄉村三級物流共同配送網絡中,以總成本最小化為優化目標,設計三階段啟發式算法對鄉鎮共同配送中心選址以及兩層級共同配送路徑優化的問題進行分階段求解。

基于此,本文做出如下假設:第一,車輛不能跨級配送;第二,配送過程不考慮貨物類型;第三,每層級車輛最多安排一次配送路線;第四,村級客戶點的配送量已知;第五,村級客戶點有服務時間要求,配送晚于服務時間會產生懲罰成本;第六,每層級車輛均勻速行駛;第七,車輛完成配送后需要返回起點。
1.2符號說明
符號定義如下。
基本參數: V 為縣級共同中轉中心; I 為鄉鎮共同配送中心集合,其中
; J 為村級客戶點集合,其中
; P 為縣級車輛集合,其中
; K 為鄉鎮級車輛集合,其中
;
為縣級車輛的行駛速度;
為鄉鎮車輛的行駛速度;
為縣級車輛容量;
為鄉鎮級車輛容量;
為鄉鎮共同配送中心 i 的需求量;
為村級客戶點 j 的需求量;
為縣級共同中轉中心 V 到鄉鎮共同配送中心 i 的距離;
為鄉鎮共同配送中心 i 到村級客戶點 j 的距離;
為鄉鎮共同配送中心 i 的服務距離上限;
為縣級共同中轉中心的容量;
為鄉鎮共同配送中心的容量;
為鄉鎮級車輛 k 從鄉鎮共同配送中心 i 到村級客戶點 j 所需時間;
為鄉鎮級車輛 k 到村級客戶點 j 的時間;
為鄉鎮級車輛k 開始服務村級客戶點 i 的時間;
為鄉鎮共同配送中心點 i 的時間窗,前者表示最早時間,后者表示最晚時間;
為村級客戶點 j 的時間窗。
成本參數:
為鄉鎮共同配送中心的運行成本;
為縣級車輛 p 的單位運輸費率;
為鄉鎮級車輛 k 的單位運輸費率;
為縣級車輛 p 使用的固定費用;
為鄉鎮級車輛 k 使用的固定費用;
為超出共同配送中心服務范圍的懲罰值;
為早于村級客戶點最早時間提供物流服務的懲罰成本;
為晚于村級客戶點最晚時間提供物流服務的懲罰成本。
決策變量:
,如果村級客戶點 j 被選中作為鄉鎮共同配送中心 i 則為1,否則為0;
,如果村級客戶點 j 由鄉鎮共同配送中心 i 服務則為1,否則為0;
,如果鄉鎮共同配送中心 i 由縣級中轉中心 V 服務則為1,否則為0;
,如果鄉鎮共同配送中心 i 由縣級車輛 p 服務則為1,否則為0;
,如果村級客戶點 j 由鄉鎮級車輛 k 服務則為1,否則為0。
1.3模型構建
針對縣鄉村三級物流共同配送網絡,以最小化成本為優化目標,建立了如下混合整數規劃模型。








其中,公式(1)表示目標函數,為最小運輸成本;公式(2)表示兩層級的車輛運輸成本;公式(3)表示兩層級車輛使用的固定成本;公式(4)表示鄉鎮共同配送中心的固定費用;公式(5)表示超出服務范圍的懲罰成本;公式(6)表示配送車輛晚于村級客戶點右時間窗到達的懲罰成本;公式(7)表示配送車輛早于村級客戶點左時間窗到達的懲罰成本;公式(8)表示鄉鎮共同配送中心 j 到村級客戶點 i 的距離不能超出服務范圍 L ;公式(9)表示每個村級客戶點 i 有且僅能由一個鄉鎮共同配送中心 j 服務;公式(10)表示在村級客戶點 i 中選取若干建立鄉鎮共同配送中心 j , t 為擬建鄉鎮共同配送中心數量;公式(11)表示只有被選中的鄉鎮共同配送中心 j 才能提供配送服務;公式(12)表示鄉鎮共同配送中心 j 的需求量不能超過縣級車輛 p 的容量限制;公式(13)表示村級客戶點 i 的需求量不能超過鄉鎮級車輛 k 的容量限制;公式(14)表示鄉鎮共同配送中心 j 的需求總量不超過縣級共同中轉中心 V 的容量限制;公式(15)表示村級客戶點 i 的需求總量不超過鄉鎮共同配送中心 j 的容量限制;公式(16)表示每個村級客戶點 j 有且只能由一輛鄉鎮級車輛 k 為其服務;公式(17)表示每個鄉鎮共同配送中心 i 有且只能由一輛縣級車輛 p 為其服務;公式(18)表示鄉鎮級車輛 k 從鄉鎮共同配送中心 i 到村級客戶點 j 的行駛時間等于鄉鎮共同配送中心 i 到村級客戶點 j 之間的距離與速度的比值;公式(19)表示鄉鎮級車輛 k 的開始服務時間必須在村級客戶點 j 的右時間窗內;公式(20)一(24)表示決策變量取值約束。
2算法設計
由于縣鄉村三級共同配送網絡屬于2E-RP,是典型的NP-Hard問題,算法無法在短時間內得到全局最優解[15-17]。故本文將縣鄉村三級共同配送問題拆分為三個易求解的子問題,并設計三階段啟發式算法對子問題進行分階段求解和優化。具體來說,第一階段確定鄉鎮共同配送中心的位置與數量,第二階段對第二層級的路徑進行優化,第三階段對第一層級的路徑進行優化。
2.1第一階段:確定鄉鎮共同配送中心的位置與數量
考慮到配送距離以及鄉鎮共同配送中心的數量是影響總成本的關鍵,本階段采用遺傳算法確定鄉鎮共同配送中心的位置與數量。算法具體步驟如下。
步驟1:染色體編碼。本階段設計了一種混合染色體編碼的方式。如圖2所示,第一行表示村級客戶點是否被選中建設鄉鎮共同配送中心,編碼為1或0,分別表示被選中和沒被選中。假設有5個村級客戶點,根據隨機性,村級客戶點編號1和編號4被選中建設鄉鎮共同配送中心。其他行產生(0,1)之間的隨機數,根據隨機數的優先級確定歸屬于哪個鄉鎮共同配送中心。例如,鄉鎮共同配送中心編號1對應服務村級客戶點編號5,而鄉鎮共同配送中心編號4對應服務村級客戶點編號2和3。
步驟2:種群初始化。依據優先級將村級客戶點分配給鄉鎮共同配送中心后,判斷村級客戶點的需求量是否超過鄉鎮共同配送中心的容量,如未超過,該村級客戶點分配給當前鄉鎮共同配送中心;否則,記錄該村級客戶點,順次進行下一個村級客戶點的分配,直至將所有村級客戶點分配完。

步驟3:考慮到鄉鎮共同配送中心的容量屬于硬約束,當違反鄉鎮共同配送中心的容量時,則增加鄉鎮共同配送中心的個數。當超出鄉鎮共同配送中心的服務范圍時,將會引入懲罰因子,接受不符合服務范圍約束的不可行解,以此增加解的多樣性。適應度值函數的計算公式如式(25)所示。

步驟4:交叉操作。除染色體第一行外,根據交叉概率 P c 對隨機位置進行單點交叉,從而生成新的染色體。如圖3所示,隨機選中父代1第3個位置后的基因與父代2對應位置進行交叉形成新的子代。
步驟5:變異操作。基于染色體的編碼特性,根據變異概率P m 對染色體第一行個體隨機選取基因序列中的一個位置,并進行取反操作。
步驟6:精英保留策略。將經過交叉以及變異等遺傳操作后形成的子代的適應度值與舊的適應度值相比較,如果優于舊的適應度值則進行更新。
步驟7:停止條件。判斷當前迭代是否達到最大,若滿足則算法終止;否則,轉至步驟3。
2.2第二階段:第二層級的路徑優化問題
根據鄉鎮共同配送中心選址結果,第二階段為鄉鎮多個共同配送中心的路徑優化問題。針對鄉鎮多個共同配送中心路徑問題進行綜合求解,本文設計了多段編碼方式,將變領域搜索策略以及插入算子融入頭腦風暴算法中,提高解的全局搜索能力。具體步驟如下。
步驟1:編碼設計。根據車輛以及車輛服務的村級客戶點進行編碼,使自然數與村級客戶點的順序相對應。如圖4所示,假設有8個村級客戶點以及2個鄉鎮共同配送中心。染色體前段代表村級客戶點,后段表示為其服務的車輛編號。車輛編號為1表示該車輛屬于第1個鄉鎮共同配送中心,同時為村級客戶點編號1、2、5、7服務。而車輛編號為2表示該車輛屬于第2個鄉鎮共司配送中心,同時為村級客戶點編號3、4、6、8服務。
步驟2:適應度函數。解碼后的配送方案不一定都是可行的。首先,根據車輛編號,對村級客戶點進行分組,同時按照左時間窗的大小排序,組數與車輛使用數量相同。其次,通過公式計算違反時:,并采用懲罰操作來接受違反時間窗約束的不可行解。最后,利用公式(26)計算其適應度函數。

步驟3:聚類與替換。利用K-means聚類,并在每個聚類中,按照個體的適應度值進行排序,選擇每一類的最優個體作為聚類中心。同時,生成一個隨機數
,
。如果
小于替換概率
,則隨機選擇一個聚類中心,并用隨機值進行替換;否則,生成新個體。
步驟4:更新個體。更新個體是產生新個體的主要步驟。產生新個體的方式有兩種:一是隨機選擇一個類的中心或者選擇該類中的個體,對其進行變異操作。二是隨機選擇兩個類的中心或者分別從兩類中隨機選擇一個個體,對兩個個體進行交叉操作。
步驟5:插入算子。替換與更新后的個體并不一定滿足裝載量的約束,將不滿足車輛裝載量的村級客戶點放人未安排集合中。依據公式(27),以可安排車輛的最后一個村級客戶點 j 與未安排集合中村級客戶點 u 之間的行駛時間和等待時間最小化為插入準則,將u 插入到可安排車輛村級客戶點 j 后[18]

步驟6:變領域搜索策略。為了提高解的質量,針對更新所產生的前 3 0 % 優秀個體進行變領域搜索策略,主要采用如圖5所示的三種領域搜索策略,分別是交換操作、逆轉操作以及插入操作,并通過輪盤賭進行隨機選擇,先將這三種操作的概率組成一個數組 p ,再生成一個隨機數 r 。隨后,計算操作概率的累積和 c 。根據隨機數,確定采用哪種操作。
步驟7:停止條件。判斷當前迭代是否達到最大,是則輸出最優適應值;否則,轉至步驟3。
2.3第三階段:第一層級的路徑優化問題
第三階段是根據鄉鎮共同配送中心的選址結果以及縣級共同中轉中心的位置求出第一層級的配送路徑。通過計算鄉鎮多個共同配送中心所服務村級客戶點配送量的總和,在滿足車容量的約束條件下,考慮第一層級的配送成本,并利用模擬退火算法求出第一層級的最優配送路徑,使得總成本最低。
3 算例分析
為了驗證模型的有效性,將江西省上饒市橫峰縣相關數據代入模型中進行算例研究。上饒市橫峰縣在全省示范縣中率先推進縣鄉村三級物流體系建設,對于研究縣鄉村三級物流共同配送具有一定的典型性。受篇幅影響,僅展示其中部分數據,部分相關數據如表1所示。


3.1算例驗證
3.1.1 鄉鎮共同配送中心選址
根據第一階段算法步驟及已知條件,利用遺傳算法對鄉鎮共同配送中心進行選址,最終得出在村級客戶點編號為24、27以及30號三處建立鄉鎮共同配送中心。求解結果如表3所示。

由表3可知,第一階段鄉鎮共同配送中心的選址最優數目為3個,編號為24、27以及30號的村級客戶點被同時選為鄉鎮共同配送中心。
3.1.2 第二層級路徑優化
在鄉鎮共同配送中心選址的基礎上,運用改進的頭腦風暴算法對鄉鎮多個共同配送中心路徑進行優化,得到最優的運行路徑結果如表4所示。

由表4可知,從鄉鎮共同配送中心共需派出5輛車,其中,鄉鎮共同配送中心1號派出1輛車對12個村級客戶點進行配送服務,鄉鎮共同配送中心2號派出3輛車對34個村級客戶點進行配送服務,鄉鎮共同配送中心3號派出1輛車對14個村級客戶點進行配送服務。此時鄉鎮共同配送中心最低總成本為3741.3元。求解過程中,改進的頭腦風暴算法最優解變化趨勢如圖6所示。
3.1.3第一層級路徑優化
通過第一階段確定的共同配送中心位置及第二層級確定的各個鄉鎮共同配送中心的配送量,利用模擬退火算法求出第一層級的最優配送路徑為 1324 ,總成本為339.5元。
3.2 配送成本對比分析
在相關參數設置不變的情況下,將縣鄉村三級物流單獨配送與共同配送的費用情況進行對比,結果如表5所示。


由表5可知,縣鄉村三級物流共同配送比單獨配送的總成本低9776.0元;縣級車輛的使用量減少2輛;鄉鎮級車輛使用量減少10輛;車輛的總行駛距離減少 7 8 8 . 2 k m 。可以看出,縣鄉村三級物流采取共同配送策略可以降低總成本,減少車輛使用量以及總行駛距離。
4結論
農村電商的興起為當地經濟注人了新的活力,同時也凸顯了農村物流所面臨的眾多挑戰。隨著越來越多的農村消費者選擇在線購物,農村物流需應對更廣泛和更復雜的配送范圍與路徑。縣鄉村三級物流共同配送作為整合多方配送資源的重要策略,能夠通過集中處理和配送多個農村地區的貨物,降低物流成本、提高效率,并縮短配送時間,是克服農村物流發展難題的有效途徑。
本文基于農村物流的發展,結合縣鄉村三級物流理論,提出引入共同配送策略,設計了縣鄉村三級物流共同配送網絡,采用三階段啟發式算法來求解鄉鎮共同配送中心選址與兩層級配送路徑問題。通過案例及對比分析,一方面說明了縣鄉村三級物流共同配送相對于單獨配送能夠顯著減少車輛總行駛距離、降低配送成本以及車輛使用量;另一方面也證明了本文提出的三階段啟發式算法具有可行性。
參考文獻:
[1]QINZhaoui,EIXueke,ANDRIANARIMANANAMH,etalDigital inclusivefinanceandthedevelopmentofrurallogistics in China[J/OL]. Heliyon,2023,9(6).[2024-06-10]. https://doi.org/10.1016/j.heliyon.2023.e17329.
[2]HEYunzhu.Pricingof thebus-truck co-deliverymodeoflastmiledeliveryconsideringsocialwelfare maximization[J/OL]. Sustainability,2023,15(1):1-15. [2024-06-10]. https://doi.org/10.3390/su15010376.
[3]許菱,楊林超,朱文興,等.農村電商物流下無人機與車輛協同配送路徑優化研究[J].計算機工程與應用,2024,60 (1):310-318.
[4]許文鑫,張敏,熊國文.配送車與無人機的農村物流配送路徑優化仿真[J].計算機仿真,2022.39(6):151-157.
[5]CHU Xiang,WANGRui,RELong,etal.Enablingjoint ditributionwithblockchaitechologyinlast-milelogistics[J/OL]. Computers amp; Industrial Engineering,2024,187. [2024-06-12]. https://doi.org/10.1016/j.cie.2023.109832.
[6]張文藝.考慮多運輸模式的農村快遞共配LRP問題[J].物流技術,2024,43(1):41-53.
[7]LIUGuihang,HUJiayao,YANGYu,etal.Vehiclerouting problemincoldchain logistics:Ajoint distribution model with carbontrading mechanisms[J/OL].Resources,ConservationandRecycling,2020156(2).[2024-6-12].https://doiorg/0.116 /j.resconrec.2020.104715.
[8]ZHANGChunyun,JIHuaweiJIAShengtai,etal.Aplicationofsplitdeliveryvehiclerouting problemin UrbanExpressJint Distribution[J/OL].IOPConferenceSeries:MaterialsScienceandEngineering,2O1968(4):1-8224-06-15].htps://stats. org/article/10.1088/1757-899X/688/4/044067.
[9]ZHOU Yuyang,XIERuxin,ZHANG Tianhui,etal.Joint distributioncenterlocation problem forrestaurant industrybasedon improved K-means algorithm with penalty[J]. IEEE Access,2020,8:37746-37755.
[10]HE Yandong,WANG Xu,LIN Yun,etal.Sustainable decision making for joint distribution center locationchoice[J]. Transportation Research Part D:Transport and Environment,2O17,55:202-216.
[11]何馨韻,張媛,朱磊.基于共同配送的城市快遞優化方案研究[J].北京印刷學院學報,2023,31(6):17-23.
[12] 李珍萍,趙雨薇,張煜煒.共同配送選址-路徑優化模型與算法[J].重慶大學學報,2020,43(1):28-43.
[13]辜勇,袁源乙,張列,等.帶時間窗的多中心半開放式車輛路徑問題[J].中國機械工程,2020,31(14):1733-1740.
[14]劉琳,賈鵬,高犇,等.新鮮度限制約束下物流配送中心選址-路徑優化[J].包裝工程,2022,43(5):232-241.
[15]元瑞,李俊青.基于問題性質的裝配式預制件配送優化算法[J].控制理論與應用,2024,41(2):283-291.
[16]INZA EP,VAKHANIAN,ALMIRAJM S,et al.Exactand heuristic algorithms for the domination problem[J].European Journal of Operational Research,2024,313(3):926-936.
[17]HAMIDIANN,PAYDAR M M,HAJIAGHAEI-KESHTELI M.A hybrid meta-heuristic approach to design a Bi-objective cosmetictourismsupplychain:Acasestudy[/L].EngineringApplicationsofArtificial Intellgence,224,127.[22406-17]. https://doi.org/10.1016/j.engappai.2023.107331.
[18]張歆悅,靳鵬,胡笑旋,等.時間依賴型多配送中心帶時間窗的開放式車輛路徑問題研究[J].中國管理科學, 2024,32(1):146-157.