









摘 要: 旨在明確卵泡抑素(follistatin,FST)對豬卵巢顆粒細胞增殖、凋亡和激素分泌的影響,以期為探討FST在豬卵泡生長過程中發揮的作用提供科學依據。本研究以永生化豬卵巢顆粒細胞為試驗材料,將細胞分為過表達對照組、過表達組、干擾對照組和干擾組共4個試驗組,每個試驗組設置3個重復孔,根據FST基因的mRNA序列構建過表達質粒和設計siRNA,通過將其轉染至顆粒細胞中,驗證過表達及抑制效果。使用CCK-8和流式細胞法分析轉染24、48和72 h后顆粒細胞增殖及凋亡情況,ELISA法檢測細胞中雌二醇和孕酮含量變化,并進一步利用RT-PCR和WB法分別檢測此過程中增殖、凋亡和激素合成相關基因的mRNA和蛋白表達水平。結果表明,構建的過表達質粒和siRNA可顯著改變細胞中FST的表達水平(Plt;0.01),且轉染至豬卵巢顆粒細胞后,FST抑制細胞增殖,誘導細胞凋亡,并可顯著降低細胞中增殖凋亡相關基因FSHR、GDF9、BCL2、CDKN1B的mRNA(Plt;0.05)和蛋白表達水平(Plt;0.01)。而干擾FST后,卵巢顆粒細胞中雌二醇和孕酮的含量極顯著增加(Plt;0.01),且STAR、CYP11A1、CYP19A1、3β-HSD、17β-HSD等激素合成相關基因的mRNA和蛋白表達量同樣極顯著升高(Plt;0.01)。綜上所述,在豬卵巢顆粒細胞中,FST基因表達水平的降低可有效促進細胞的增殖及雌二醇和孕酮的分泌,這一作用發揮可能與上調增殖凋亡相關基因和激素合成限速酶的表達有關。
關鍵詞: FST;豬;顆粒細胞;增殖凋亡;雌二醇;孕酮
中圖分類號:
S828.3"""" 文獻標志碼:A"""" 文章編號: 0366-6964(2025)03-1242-10
收稿日期:2024-09-24
基金項目:江西省農業科學院基礎研究與人才培養項目(JXSNKYJCRC202217;JXSNKYJCRC202411);江西省自然科學基金項目(20202BAB205010)
作者簡介:劉晨龍(1988-),男,江西吉安人,副研究員,博士,主要從事畜禽遺傳育種研究, Tel:0791-82728433,E-mail: liuchenlong1204@163.com
*通信作者:周泉勇,主要從事生豬遺傳育種研究,E-mail:89629577@qq.com
Effect of FST on Proliferation, Apoptosis and Hormone Secretion of Porcine Ovarian Granulosa Cells
LIU" Chenlong "JI" Huayuan "LU" Dan3, WAN" Mingchun "HU" Yao "ZHOU" Quanyong1,2*
(1.Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science,
Nanchang 330200," China;" 2.Jiangxi Province Key Laboratory of Animal Green and Healthy
Breeding, Nanchang 330200," China; 3.Jiangxi Mucun Agriculture and Animal Husbandry
Technology Co., Ltd., Jiujiang 332438," China)
Abstract:" The purpose of this study was to clarify the effect of FST gene on proliferation, apoptosis, and hormone secretion of porcine ovarian granulosa cells, and provide scientific reference for investigating the role of FST gene in the development of pig follicles. In this study, immortalized porcine ovarian granulosa cells were used as experimental materials, the granulosa cells were divided into 4 groups with 3 replications per group that included overexpression negative control group, overexpression group, inhibition negative control group and inhibition group. The overexpression plasmid and siRNA of FST gene were designed and constructed according to the mRNA sequence, and transfected into porcine ovarian granulosa cells to verify the overexpression and inhibitory effects. The CCK-8 and flow cytometry were used to analyze granulosa cell proliferation and apoptosis after transfection for 24, 48 and 72 h, ELISA was used to detect estradiol and progesterone content in granulosa cell. Furthermore, RT-PCR and Western blot were used to detect mRNA and protein expression level of cell proliferation, apoptosis, and hormone synthesis related genes. The results showed that, the mRNA and protein expression level of FST gene were significantly changed by overexpression plasmid and siRNA (Plt;0.01); and FST gene could inhibit cell proliferation and induce cell apoptosis after transfecting overexpression plasmid and siRNA into porcine ovarian granulosa cells, and also significantly downregulated the mRNA (Plt;0.05) and protein (Plt;0.01) expression level of cell proliferation and apoptosis related genes FSHR, GDF9, BCL2 and CDKN1B. After interfering with FST expression, the estradiol and progesterone content in porcine ovarian granulosa cells were extremely significantly increased (Plt;0.01), and the mRNA and protein expression level of hormone synthesis related genes STAR, CYP11A1, CYP19A1, 3β-HSD, and 17β-HSD were also extremely significantly increased (Plt;0.01). In summary, in porcine ovarian granulosa cells, the decrease of FST gene expression level could accelerate cell proliferation, estradiol and progesterone secretion, and this function could be due to the upregulation of cell proliferation and apoptosis related genes and hormone synthesis rate limiting enzymes expression.
Keywords: FST; pig; granulosa cells; proliferation and apoptosis; estradiol; progesterone
*Corresponding author:ZHOU Quanyong, E-mail:89629577@qq.com
在母豬的繁殖過程中,卵泡發育是關鍵環節。卵泡的正常生長發育并最終排卵是母豬發情和受精的先決條件,且排卵數的多少直接影響著產仔數的高低。挖掘調控卵泡發育的關鍵因子,可為提高母豬總產仔數性能奠定研究基礎,有著極為重要的意義。
顆粒細胞(granulosa cells,GC)是調控卵泡發育的關鍵細胞,其迅速增殖分化及分泌的類固醇激素直接影響著卵泡的發育[1-5]。卵泡抑素(follistatin,FST)是卵泡顆粒細胞分泌的一種單鏈糖蛋白,可抑制促卵泡生成素的生物合成和分泌[6],還可通過卵巢旁分泌模式調控顆粒細胞的增殖凋亡[7]。研究顯示,FST的表達伴隨著卵泡細胞的整個發育過程,并在卵泡發育過程中呈現一種動態調節變化[8]。在小鼠中,特異性缺失顆粒細胞中FST會引起卵泡數量減少從而導致排卵和受精缺陷[9]。在水牛中,卵泡抑素可明顯提高卵母細胞的成熟度,促進卵泡生長發育以及早期胚胎發育[10-11]。同時,在牛卵丘-卵母細胞復合物的體外培養過程中,添加FST可顯著降低卵母細胞發育潛能[12]。這些結果提示,FST可能是卵泡發育過程中的關鍵調節因子,且其表達量的變化與卵泡發育密切相關。在豬中,現已檢測發現,伴隨著卵泡的生長發育過程,FST基因表達水平顯著降低[13],且外源添加高濃度的FST會降低卵母細胞的成熟率[14]。團隊前期研究同樣發現,FST在斷奶后5 d的修水杭豬和杜洛克豬卵巢組織中mRNA表達水平均顯著高于發情時期,且發情時期杜洛克豬卵巢組織中的mRNA表達量明顯高于修水杭豬[15]。顯然,在豬卵泡發育過程中,FST的表達水平存在變化,且參與調控卵泡的生長發育成熟,但其具體功能及調節機制尚不清楚。基于此,本研究通過設計FST基因的siRNA和構建過表達質粒,探討FST對豬顆粒細胞增殖、凋亡和類固醇激素生成的影響及其分子調控機制,以期為揭示FST在豬卵泡生長過程中發揮的功能提供重要數據。
1 材料與方法
1.1 試驗材料
永生化豬卵巢顆粒細胞(ZNCO119)購自知恩生物科技有限公司,CCK8試劑盒(ABS50003)和細胞凋亡檢測試劑盒(AP101)來自上海愛必信科技有限公司,雌二醇(JEN-01)和孕酮(JEN-02)檢測試劑盒來自安徽巧伊生物科技有限公司,FST抗體(DF4839)、CDKN1B抗體(25614-1-AP)、FSHR抗體(22665-1-AP)、GDF9抗體(A2739)、BCL2抗體(AF6139)等來自武漢三鷹生物技術有限公司。
1.2 siRNA合成和過表達質粒構建
從GenBank中調取豬FST基因mRNA序列(NM_001 003 662.1),分別設計3條siRNA,序列見表1。siRNA合成和過表達質粒構建委托通用生物股份有限公司進行,其中構建質粒所用載體為pcDNA3.1(+),限制性內切酶為Nhe I和Xho I。
1.3 細胞培養及轉染
復蘇豬卵巢顆粒細胞,將細胞培養在含1%雙抗和10% FBS的DMEM/F12完全培養基中,并以1×106個·孔-1分別將細胞接種到6孔板,待融合度至55%左右時,參考Lipofectamine 2000說明書步驟分別進行過表達質粒和siRNA轉染。轉染過程中分別設置過表達對照組(OE-NC)、過表達組(OE)、干擾對照組(S1-NC)和干擾組(S3-440),每個組設置3個重復孔。質粒轉染體系為每孔0.1 μg,siRNA轉染細胞的終濃度為100 nmol·L-1。
1.4 RT-PCR檢測基因mRNA表達水平
利用Trizol法提取細胞中的RNA,核酸測定儀檢測RNA質量合格后進行反轉錄,反轉錄程序按照全式金cDNA合成試劑盒說明書步驟進行。利用Primer5.0設計引物,引物序列見表2。合成的引物試擴增檢測合格后,進行RT-PCR檢測,擴增體系和擴增程序參考周泉勇等[16]的方法進行。擴增結束后導出原始數據。
1.5 CCK-8檢測細胞增殖
于96孔板中接種細胞(1×104個·孔-1),每孔體積100 μL,試驗分組及細胞轉染過程按方法“1.3”進行,每組設置6個重復孔。在每組分別轉染培養24、48和72 h后,加入10 μL CCK-8試劑,隨后37 ℃下孵育2 h,在酶標儀450 nm處測定吸光度值。
1.6 流式細胞法檢測細胞凋亡
按方法“1.3”進行試驗分組和轉染培養后,收集5×105個細胞,500 μL 1×BindingBuffer 重懸細胞,分別加入5 μL AnnexinV-FITC和10 μL PI混勻后室溫避光孵育5 min,然后用流式細胞儀上機檢測讀取數據。
1.7 Western blot檢測相關基因的蛋白表達
按方法“1.3”進行試驗分組和轉染培養后,每組細胞加入500 μL RIPA(含1 mmol·L-1 PMSF)冰上裂解細胞30 min,將樣品在4 ℃以12 000 r·min-1離心10 min,離心結束收集上清蛋白液。之后使用BCA蛋白濃度測定試劑盒檢測蛋白濃度,根據測定結果調整蛋白濃度并進行變性處理。按每泳道約30 μg上樣量進行SDS-PAGE電泳,冰浴條件下濕轉印至PVDF膜,隨后浸泡入封閉液中,室溫輕搖封閉2 h,與目標抗體(1∶1 000稀釋)4 ℃冷藏室靜置過夜,在室溫條件下與羊抗兔IgG-HRP(1∶2 000稀釋)進行1 h孵育,最后添加ECL顯色液進行拍照。
1.8 ELISA檢測雌二醇和孕酮含量
按方法“1.3”進行試驗分組和轉染培養48 h后,收集細胞上清,分別按照雌二醇和孕酮試劑盒中說明書進行激素含量檢測。
1.9 數據統計分析
所有數據均采用Excel 2023軟件匯總、統計和分析。其中,目的基因mRNA差異表達分析采用2-△△Ct法進行,目的基因蛋白差異表達分析采用目的蛋白表達量/內參蛋白表達量進行。
2 結 果
2.1 轉染效果檢測分析
分別轉染過表達質粒和siRNA至GC細胞,利用RT-PCR和WB檢測細胞中FST表達水平。結果顯示(圖1和圖2),轉染過表達質粒后,GC細胞中FST基因mRNA和蛋白表達量極顯著升高(P<0.01),而轉染S2-199和S3-440后,GC細胞中FST基因mRNA和蛋白表達量極顯著降低(P<0.01)。結果表明,轉染過表達質粒和S2-199、S3-440可有效改變豬GC細胞中FST的表達水平。
2.2 FST抑制GC細胞增殖
分別轉染過表達質粒和siRNA至GC細胞,利用CCK-8檢測細胞增殖情況。結果顯示(圖3),轉染48和72 h后,過表達組GC細胞OD值顯著下"" 降(P<0.05),而siRNA組GC細胞OD值顯著上升(P<0.05)。結果表明,在豬GC細胞中,FST基因的表達上升可抑制細胞增殖。
2.3 FST誘導GC細胞凋亡
分別轉染過表達質粒和siRNA至GC細胞,利用流式細胞法檢測細胞凋亡情況。結果顯示(圖4),轉染72 h后,過表達組GC細胞的凋亡率極顯著升高(P<0.01),而siRNA組GC細胞的凋亡率極顯著降低(P<0.01)。結果表明,豬GC細胞中,FST基因的表達上升可誘導細胞凋亡發生。
2.4 FST調控GC細胞中增殖凋亡基因表達水平變化
分別轉染過表達質粒和siRNA至GC細胞,利用RT-PCR檢測增殖凋亡相關基因的表達。結果顯示(圖5),在過表達處理組中,FSHR、GDF9、BCL2和CDKN1B基因的mRNA表達量顯著降低(P<0.05),而在siRNA處理組中,FSHR、BCL2和CDKN1B基因的mRNA表達量顯著增加(P<0.05)。進一步利用WB檢測mRNA差異表達基因對應的蛋白表達水平。結果顯示(圖6),過表達組FSHR、GDF9、BCL2、CDKN1B基因的蛋白表達量極顯著降低(P<0.01),而siRNA組FSHR、GDF9、BCL2、CDKN1B基因的蛋白表達量極顯著升高(P<0.01)。結果表明,在豬GC細胞中,FST表達上升可抑制FSHR、GDF9、BCL2"" 和CDKN1B基因的表達。
2.5 FST抑制GC細胞中雌二醇和孕激素分泌
分別轉染過表達質粒和siRNA至GC細胞,利用ELISA檢測激素水平變化。結果顯示(圖7),過表達組雌二醇與孕酮的分泌水平極顯著降低(P<0.01),而siRNA組雌二醇與孕酮的分泌水平極顯著升高(P<0.01)。結果表明,在豬GC細胞中,FST基因的表達上升可抑制雌二醇和孕酮的合成分泌。
2.6 FST調控GC細胞中激素合成相關基因表達水平變化
分別轉染過表達質粒和siRNA至GC細胞,利用RT-PCR和WB檢測激素合成相關基因的表達。結果顯示(圖8),過表達組的STAR、CYP11A1、"" CYP19A1、3β-HSD和17β-HSD基因的mRNA和蛋白表達量均極顯著降低(P<0.01),而siRNA組的mRNA和蛋白表達量則極顯著升高(P<0.01)。結果表明,在豬GC細胞中,FST表達上升可下調STAR、CYP11A1、CYP19A1、3β-HSD、17β-HSD基因的表達。
3 討 論
卵巢中顆粒細胞的迅速增殖可有效促進卵泡的生長和發育,而顆粒細胞的凋亡發生,則會誘導卵泡閉鎖[17-19]。FST是促卵泡生成素的抑制劑,抑制其表達可顯著促進卵巢卵泡顆粒細胞的增殖[20];此外,FST亞型蛋白FST288的表達可導致小鼠胚胎期卵巢中顆粒細胞的增殖急劇下降,并顯著降低卵巢原始卵泡的百分比[21]。本試驗通過CCK-8檢測同樣分析發現,FST可抑制豬卵巢顆粒細胞的增殖,與上述研究結果相吻合。為進一步了解FST抑制顆粒細胞增殖的機制,本研究評估了FST基因表達量的變化對細胞增殖相關基因表達水平的影響。CDKN1B被稱為細胞周期抑制蛋白,是關鍵的細胞周期調節因子,其表達水平直接影響正常細胞周期的進程[22-24]。本試驗發現,FST基因過表達后,CDKN1B基因mRNA和蛋白的表達量均顯著下調,表明FST基因可能通過抑制細胞周期蛋白的表達從而抑制豬顆粒細胞的增殖。BCL2是調控細胞凋亡過程的一個關鍵節點基因。BCL2的高水平表達可明顯抑制顆粒細胞的凋亡[25]。本試驗中,過表達FST基因可誘導豬顆粒細胞凋亡的發生,且這一過程中,BCL2基因的表達水平發生極顯著下降。由此推測,FST可經由BCL2介導的信號通路誘導豬卵巢顆粒細胞凋亡發生,進而影響卵泡的生長和發育。
顆粒細胞所分泌的雌二醇和孕酮是卵泡發育過程中的重要調節因子,其中雌二醇的作用在于促進卵泡的發育,而孕酮則起到抑制卵泡閉鎖的作用[26-29]。本研究結果表明,干擾FST基因表達可顯著提升豬顆粒細胞中雌二醇和孕酮的分泌,而過表達FST則抑制其分泌,這與他人在牛顆粒細胞中的研究結果相一致[30];提示FST可能通過參與調控卵巢顆粒細胞中雌激素與孕酮的合成來影響卵泡的生長發育。急性調節蛋白STAR和CYP11A1在顆粒細胞中被認為是孕酮合成的主要限速酶[31-33]。而3β-HSD和17β-HSD在孕烯醇酮或脫氫表雄酮轉換為孕酮和雄烯二酮的過程中扮演著重要角色[34],且3β-HSD的表達量與卵泡液中孕酮的濃度呈正相關[35]。同時,CYP19A1具有催化雄烯二酮和睪酮轉化為雌激素和雌酮的功能[36-37]。本研究發現,豬顆粒細胞中FST表達量的變化會影響STAR、CYP11A1、CYP19A1、3β-HSD和17β-HSD等與雌激素和孕酮合成相關基因的表達,且這種變化趨勢與細胞中雌二醇和孕酮含量的變化相一致。
顆粒細胞作為雌激素的靶細胞,其增殖和凋亡同時受雌激素水平的調控。雌激素水平的上升可有效刺激顆粒細胞的增殖,而雌激素的缺乏會導致顆粒細胞凋亡增加進而發生卵泡閉鎖[27,30]。FSHR是促卵泡素(follicle stimulating hormone,FSH)特異性受體,是顆粒細胞的特異性標記。FSH發揮作用需與顆粒細胞表面FSHR結合,從而促進雌激素與孕酮的分泌及顆粒細胞的增殖[38]。GDF9是TGF-β超家族成員之一,參與調節顆粒細胞的增殖和凋亡,在與FSH共處理時,能促進FSH誘導的孕激素合成和STAR基因的表達上升[39-41]。本試驗中,過表達FST后可顯著降低FSHR、GDF9的表達水平,提示FST可能通過抑制雌、孕激素合成通路中關鍵基因的表達,從而影響豬顆粒細胞合成和分泌類固醇激素,并進一步影響顆粒細胞的增殖和凋亡。
4 結 論
本研究結果表明,FST基因可能通過影響細胞增殖凋亡基因CDKN1B、BCL2、FSHR和GDF9的表達來調控豬卵巢顆粒細胞的增殖凋亡;并可能通過改變激素合成相關基因STAR、CYP11A1、CYP19A1、3β-HSD和17β-HSD的表達來影響豬顆粒細胞雌二醇和孕酮的合成分泌。
參考文獻(References):
[1] GUPTA C,CHAPEKAR T,CHHABRA Y,et al.Differential response to sustained stimulation by hCG amp; LH on goat ovarian granulosa cells[J].Indian J Med Res,2012,135(3):331-340.
[2] MATSUDA F,INOUE N,MANABE N,et al.Follicular growth and atresia in mammalian ovaries:regulation by survival and death of granulosa cells[J].J Reprod Dev,2012,58(1):44-50.
[3] WANG L,CHEN Y R,WU S,et al.PIM2-mediated phosphorylation contributes to granulosa cell survival via resisting apoptosis during folliculogenesis[J].Clin Transl Med,2021,11(3):e359.
[4] ARCHILIA E C,BELLO C A P,BATALHA I M,et al.Effects of follicle-stimulating hormone,insulin-like growth factor 1,fibroblast growth factor 2,and fibroblast growth factor 9 on sirtuins expression and histone deacetylase activity in bovine granulosa cells[J].Theriogenology,2023,210:1-8.
[5] 宋浩然,馮肖藝,張培培,等.奶牛卵泡顆粒細胞在卵泡發育中的作用機制[J].畜牧獸醫學報,2024,55(6):2313-2324.
SONG H R,FENG X Y,ZHANG P P,et al.The mechanism of follicular granulosa cells in follicular development in dairy cows[J].Acta Veterinaria et Zootechnica Sinica,2024,55(6):2313-2324.(in Chinese)
[6] KIMURA F,BONOMI L M,SCHNEYER A L.Follistatin regulates germ cell nest breakdown and primordial follicle formation[J]. Endocrinology,2011,152(2):697-706.
[7] WOODRUFF T K,LYON R J,HANSEN S E,et al.Inhibin and activin locally regulate rat ovarian folliculogenesis[J]. Endocrinology,1990,127(6):3196-3205.
[8] PATEL O V,BETTEGOWDA A,IRELAND J J,et al.Functional genomics studies of oocyte competence:evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes[J].Reproduction, 2007,133(1):95-106.
[9] JORGEZ C J,KLYSIK M,JAMIN S P,et al.Granulosa cell-specific inactivation of follistatin causes female fertility defects[J].Mol Endocrinol,2004,18(4):953-967.
[10] LI D R,QIN G S,WEI Y M,et al.Immunisation against inhibin enhances follicular development,oocyte maturation and superovulatory response in water buffaloes[J].Reprod Fertil Dev,2011,23(6):788-797.
[11] WANG H X,CHEN W L,SHEN P L,et al.Follistatin (FST) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development[J].Reprod Domest Anim,2023,58(12):1718-1731.
[12] SILVA C C,KNIGHT P G.Modulatory actions of activin-A and follistatin on the developmental competence of in vitro-matured bovine oocytes[J].Biol Reprod,1998,58(2):558-565.
[13] LI M D,DEPAOLO L V,FORD J J.Expression of follistatin and inhibin/activin subunit genes in porcine follicles[J].Biol Reprod,1997,57(1):112-118.
[14] GUO Z,ISLAM M S,LIU D,et al.Differential effects of follistatin on porcine oocyte competence and cumulus cell gene expression in vitro[J].Reprod Domest Anim,2018,53(1):3-10.
[15] ZHOU Q Y,WAN M C,WEI Q P,et al.Expression,regulation,and functional characterization of FST gene in porcine granulosa cells[J].Anim Biotechnol,2016,27(4):295-302.
[16] 周泉勇,劉 敬,劉晨龍,等.DIRAS3誘導豬子宮內膜上皮細胞自噬及對容受性相關基因表達的影響[J].江西農業大學學報,2023,45(1):169-178.
ZHOU Q Y,LIU J,LIU C L,et al.DIRAS3 induces autophagy in porcine endometrial epithelial cells and its effect on the expression of receptivity related genes[J].Acta Agriculturae Universitatis Jiangxiensis,2023,45(1):169-178.(in Chinese)
[17] 張 焱,張 華.哺乳動物卵巢卵泡發育調控機制研究進展[J].生理學報,2020,72(1):63-74.
ZHANG Y,ZHANG H.Research advances in regulating mechanisms of mammalian ovarian folliculogenesis[J].Acta Physiologica Sinica,2020,72(1):63-74.(in Chinese)
[18] ZHANG X Y,YU T,GUO X Y,et al.Ufmylation regulates granulosa cell apoptosis via ER stress but not oxidative stress during goat follicular atresia[J].Theriogenology,2021,169:47-55.
[19] GAO Y Y,ZOU Y G,WU G J,et al.Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome[J].Front Med (Lausanne),2023,10:1193749.
[20] 凌英會,朱 露,吳 昊,等.山羊FST慢病毒載體構建及其對卵巢卵泡顆粒細胞增殖的影響[J].畜牧獸醫學報,2019,50(9):1888-1896.
LING Y H,ZHU L,WU H,et al.Construction of goat FST lentivirus vectors and its effect on the proliferation of ovarian follicular granulosa cells[J].Acta Veterinaria et Zootechnica Sinica,2019,50(9):1888-1896.(in Chinese)
[21] WANG Z P,NIU W B,WANG Y J,et al.Follistatin288 regulates germ cell cyst breakdown and primordial follicle assembly in the mouse ovary[J].PLoS One,2015,10(6):e0129643.
[22] CAI H,XIANG Y B,QU S M,et al.Association of genetic polymorphisms in cell-cycle control genes and susceptibility to endometrial cancer among Chinese women[J].Am J Epidemiol,2011,173(11):1263-1271.
[23] WEI J,ZENG Y,YANG Q,et al.GAS5 suppresses cell proliferation,migration,and invasion via the miR-455-5p/CDKN1B axis in cutaneous squamous cell carcinoma[J].Crit Rev Eukaryot Gene Expr,2022,32(5):63-76.
[24] KIM H S,NOH Y K,MIN K W,et al.Low CDKN1B expression associated with reduced CD8+T lymphocytes predicts poor outcome in breast cancer in a machine learning analysis[J].J Pers Med,2023,14(1):30.
[25] 王雪峰,譚 峰,陳燕英,等.攜帶bcl-2基因慢病毒感染人原代卵巢顆粒細胞的凋亡[J].中國組織工程研究,2013,17(28):5209-5215.
WANG X F,TAN F,CHEN Y Y,et al.Apoptosis of human primary ovarian granulose cells infected with lentivirus carrying bcl-2 gene[J].Chinese Journal of Tissue Engineering Research,2013,17(28):5209-5215.(in Chinese)
[26] EMORI C,SUGIURA K.Role of oocyte-derived paracrine factors in follicular development[J].Anim Sci J,2014,85(6):627-633.
[27] HILKER R E,PAN B,ZHAN X S,et al.MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells[J].J Mol Endocrinol,2021,68(1):11-22.
[28] BABAYEV E,XU M,SHEA L D,et al.Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth[J].Mol Hum Reprod,2022,28(10):gaac033.
[29] SHAO T,KE H N,LIU R,et al.Autophagy regulates differentiation of ovarian granulosa cells through degradation of WT1[J].Autophagy,2022,18(8):1864-1878.
[30] GLISTER C,TANNETTA D S,GROOME N P,et al.Interactions between follicle-stimulating hormone and growth factors in modulating secretion of steroids and inhibin-related peptides by nonluteinized bovine granulosa cells[J].Biol Reprod,2001,65(4): 1020-1028.
[31] JOHNSON A L,WOODS D C.Dynamics of avian ovarian follicle development:cellular mechanisms of granulosa cell differentiation[J].Gen Comp Endocrinol,2009,163(1-2):12-17.
[32] MOSA A,NEUNZIG J,GERBER A,et al.2β- and 16β-hydroxylase activity of CYP11A1 and direct stimulatory effect of estrogens on pregnenolone formation[J].J Steroid Biochem Mol Biol,2015,150:1-10.
[33] TUGAEVA K V,SLUCHANKO N N.Steroidogenic acute regulatory protein:Structure,functioning,and regulation[J]. Biochemistry (Mosc), 2019,84(Suppl 1):S233-S253.
[34] SGR "P,ANTINOZZI C,WASSON C W,et al.Sexual dimorphism in sex hormone metabolism in human skeletal muscle cells in response to different testosterone exposure[J].Biology (Basel),2024,13(10):796.
[35] DING Z Q,DUAN H W,GE W B,et al.Regulation of progesterone during follicular development by FSH and LH in sheep[J]. Anim Reprod,2022,19(2):e20220027.
[36] AN L P,MAEDA T,SAKAUE T,et al.Purification,molecular cloning and functional characterization of swine phosphatidylethanolamine-binding protein 4 from seminal plasma[J].Biochem Biophys Res Commun,2012,423(4):690-696.
[37] GHOSH D,EGBUTA C,KANYO J E,et al.Phosphorylation of human placental aromatase CYP19A1[J].Biochem J,2019, 476(21): 3313-3331.
[38] TANG X R,MA L Z,GUO S,et al.High doses of FSH induce autophagy in bovine ovarian granulosa cells via the AKT/mTOR pathway[J].Reprod Domest Anim,2021,56(2):324-332.
[39] CHEN H Y,LIU C,JIANG H,et al.Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells[J].Cell Physiol Biochem,2017,41(2):439-450.
[40] TANAKA K,HAYASHI Y,TAKEHARA A,et al.Abnormal early folliculogenesis due to impeded pyruvate metabolism in mouse oocytes[J].Biol Reprod,2021,105(1):64-75.
[41] 楊 貞,江少如,陳小燕,等.經后增殖方對控制性超促排卵大鼠卵巢GDF9分泌及顆粒細胞凋亡的影響[J].實用醫學雜志, 2024, 40(7):918-923.
YANG Z,JIANG S R,CHEN X Y,et al.Effect of Jinghou Zengzhi Granules on ovarian GDF9 secretion and granulosa cells apoptosis in controlled ovarian hyperstimulation rats[J].The Journal of Practical Medicine,2024,40(7):918-923.(in Chinese)
(編輯 郭云雁)