




摘 要: 膽汁酸是膽固醇代謝的重要產物,分泌到腸道中的膽汁酸可通過殺菌抗炎和信號傳導等發揮改善腸道結構形態、維護腸道屏障完整、調節腸道微生物區系平衡以及增強黏膜免疫等功能,利于腸道內環境穩態,促進動物正常生長和提高生產性能。本文圍繞膽汁酸的功能,系統綜述其對動物腸道形態、黏液屏障、微生物屏障和黏膜免疫的調節作用及機制,以期為利用膽汁酸調節腸道健康提供理論依據。
關鍵詞: 膽汁酸;腸道形態;微生物屏障;腸道健康
中圖分類號:
S852.2"""" 文獻標志碼:A""" 文章編號: 0366-6964(2025)03-1006-13
收稿日期:2024-05-30
基金項目:國家乳業技術創新中心(2024-JSGG-021);寧夏回族自治區重點研發計劃(2024BBF01006);國家自然科學基金(32102570)
作者簡介:王馨怡(2003-),女,陜西藍田人,主要從事反芻動物營養研究,E-mail:wxinyi@nwafu.edu.cn
*通信作者:張 俊,主要從事反芻動物營養研究,E-mail:jzhang0701@nwafu.edu.cn
Advances in Effect and Mechanism of Bile Acids Regulating Animal Intestinal Health
WANG" Xinyi1, YAO" Junhu1, ZHANG" Xia2, ZHANG" Jun1,3*
(1.College of Animal Science and Technology, Northwest Aamp;F University, Yangling 712100,
China;
2.College of Veterinary Medicine, Northwest Aamp;F University, Yangling 712100," China;
3.National Center of Technology Innovation for Dairy, Hohhot 010100," China)
Abstract: "Bile acids are important products of cholesterol metabolites, and the bile acids secreted into the intestine can improve the structure and morphology of the intestine, maintain the integrity of the intestinal barrier, regulate the balance of the intestinal microflora, and enhance the functions of mucosal immunity through bactericidal, anti-inflammatory and signal transduction, which is conducive to the homeostasis of the intestinal environment, promotes the normal growth of animals and improves the production performance. This paper systematically elaborate the regulatory effects and mechanisms of bile acids on intestinal morphology, mucus barrier, microbial barrier and mucosal immunity in animals, in order to provide a theoretical basis for the use of bile acids to regulate intestinal health.
Keywords: bile acid; intestinal morphology; microbial barrier; intestinal health
*Corresponding author:" ZHANG Jun,E-mail:jzhang0701@nwafu.edu.cn
腸道健康對動物的生長發育和生產性能至關重要。腸道不僅是動物體內營養物質消化吸收的場所,也是最大的免疫器官,是機體防御體系的第一道屏障。膽汁酸(bile acids, BAs)是一類在肝中由膽固醇合成的生理代謝物,儲存于膽囊中,經膽道系統分泌至腸道發揮作用[1]。BAs除了可以乳化脂肪、間接調控營養物質吸收外,還具有調節機體糖脂代謝、抗炎殺菌和參與信號傳導等多種生物學功能[2-4]。進入腸道的BAs與腸道微生物之間具有復雜互作關系,BAs可以調節腸道微生物的生長,反過來腸道微生物也可以參與BAs的合成及分解代謝[5-6]。BAs還通過改善腸道組織形態、維護腸上皮細胞連接完整性、調節黏液分泌、增強免疫防御和激活相應受體來維護腸道健康[5-6]。本文綜述了BAs調控動物腸道健康的作用及機制,旨在為改善腸道健康、明確BAs在動物生產中的應用提供理論依據。
1 膽汁酸的結構及分類
BAs是一類具有獨特分子結構的兩性固醇類化合物,側鏈上的羥基、羧基等偏向一側形成親水面,若干環己烷和環戊烷稠合為環戊烷多氫菲形成疏水面[7]。動物膽汁中的BAs通常以側鏈的羧基與甘氨酸或牛磺酸結合成甘氨膽汁酸或牛磺膽汁酸,并以鈉鹽的形式存在。根據來源可將BAs分為初級膽汁酸(primary bile acids, PBAs)和次級膽汁酸(secondary bile acids, SBAs)。不同類型膽汁酸的形成部位、常見形式等如表1所示。
2 膽汁酸的生物學功能
BAs是動物體內重要的代謝物,具有乳化、殺菌、抗炎和信號傳導等多種生物學功能,在維持機體健康方面具有重要作用。乳化作用是BAs的經典功能之一,BAs通過促進腸內脂肪酶解、脂解產物解離吸收和改變自身濃度等多種方式促進脂質水解與吸收[8-9]。BAs還具有殺菌抑菌作用,如脫氧膽酸(deoxycholic acid, DCA)通過破壞細菌細胞膜結構達到殺菌效果;而鵝脫氧膽酸(glycochenodeoxycholic acid, CDCA)則通過破壞大腸桿菌的染色質DNA起到抑菌作用。但BAs對微生物并不全是負面作用,如牛磺膽酸是艱難梭菌芽孢萌發的強效促進劑,可促進艱難梭菌快速萌發增殖[10]。
近年來,BAs作為信號分子的功能備受關注。BAs可結合組織器官中的特異性受體在全身發揮代謝調節作用。特異性受體包括法尼醇X受體(farnesoid X-receptor, FXR)、G蛋白膽汁酸活化受體1(G protein-coupled bile acid receptor 1, GPBAR1)、維生素D受體(vitamin D receptor, VDR)等。BAs通過FXR和GPBAR1協同介導胰高血糖素樣肽-1的釋放,以刺激胰島素釋放、延緩胃排空和抑制胰高血糖素分泌,從而調節動物體內血糖水平[11-12]。GPBAR1活化膽汁酸可將白色脂肪組織轉化為米色脂肪組織以促進脂肪組織重塑,并通過細胞外調節蛋白激酶/動力蛋白相關蛋白1通路促進線粒體裂變,進而影響能量消耗[13]。同時,BAs通過結合FXR并依賴下游靶點小異二聚體伴侶(small heterodimer partner, SHP)的方式,抑制脂肪酸和總脂肪合成的主要調節因子來抑制脂肪生成;BAs也可以激活FXR-環磷酸腺苷-蛋白激酶A通路以調節能量消耗。
3 膽汁酸對動物腸道健康的調控作用
腸道健康是指動物無腸道異常表現(如腹痛、腹瀉)和疾病(如炎癥性腸病、結腸癌),并且無腸道通透性增加、黏膜炎癥、短鏈脂肪酸缺乏或過量等其他不良局部情況,腸道處于良好的生理狀態、可發揮正常功能,并維持內環境穩態[14]。腸道屏障是一種精確調節的半滲透生理結構,可吸收營養物質、保護內部環境免受病理分子和微生物的滲透,是維持腸道健康的基礎與保障。腸道屏障的完整性需要腸上皮細胞的不斷更新來維持緊密連接、黏液分泌、有益微生物區系穩定及精細調節的固有層免疫系統。BAs可激活特定的膽汁酸受體或其他下游信號通路,以調節腸道屏障的結構功能,在維持腸道屏障完整性的諸多方面發揮關鍵作用。此外,植物提取物如香蓮丸[15]、小檗堿[16]、人參皂苷[17]和菊粉[18]也能影響腸道微生物與膽汁酸互作以間接達到治療腸道疾病的目的,但其作用機制仍需進一步探索。近年來,將基因組學、轉錄組學、蛋白質組學、代謝組學、微生物組學等多種組學數據相結合的多組學綜合分析方法應用于評估膽汁酸調控腸道微生物及腸道健康的作用機理,日益受到人們的重視,也取得了顯著的成效[19-21]。
3.1 膽汁酸影響腸道物理形態及緊密連接狀態
動物生長性能和腸道健康與其腸道形態結構及物理屏障完整性密切相關[22-23](圖1)。絨毛高度、隱窩深度及兩者比值是表征腸道消化吸收功能及健康狀況的重要指標[24-25]。日糧中補充BAs可增加如仔豬、小鼠等動物腸細胞絨毛高度和絨毛高度與隱窩深度的比值(絨隱比),以保護腸黏膜免受損傷或感染,維持腸道的健康[26-27]。BAs結合受體FXR不僅促進腸細胞正常增殖,還能抑制腸道異常發育,在腸黏膜屏障的形成和維持中有重要作用,如激活FXR后可增加小鼠十二指腸絨毛高度、擴大小腸吸收面積并增強腸道消化功能[28]。
由ZO-1、Claudins和Occludin三種蛋白質組成的細胞間緊密連接是腸道物理屏障有效阻擋細菌、病毒及內毒素進入的結構基礎,它們直接作用于腸上皮細胞,控制細胞間的分子通透性[29]。膽汁酸與腸道通透性之間存在密切聯系,利用超生理濃度的DCA和CDCA處理腸上皮細胞,可觀察到表皮生長因子(epidermal growth factor receptor, EGFR)介導的信號傳導致使Occludin細胞質尾部的下游絲氨酸-蘇氨酸去磷酸化、Occludin-ZO-1復合物解離和腸道通透性增強,在給予EGFR抑制劑后,腸道通透性的變化被逆轉,表明膽汁酸可通過EGFR信號通路調節腸道上皮細胞間緊密連接,進而影響腸道穩態[30]。石膽酸還通過緩解腫瘤壞死因子-α誘導的ZO-1、Occludin和Claudin-1蛋白表達和分布的降低,改善腸道物理屏障完整性,促進動物腸道健康[31]。肌球蛋白輕鏈激酶(myosin light-chain kinase, MLCK)是緊密連接蛋白表達的關鍵酶,DCA能夠激活MLCK以增加緊密連接蛋白表達量,同時牛磺熊去氧膽酸也可通過FXR/GPBAR1-MLCK通路逆轉脂多糖(LPS)誘導的緊密連接蛋白ZO-1及Claudins的降低,改善腸道上皮屏障的損傷[32-34]。某些植物提取物如姜黃素通過改變雞微生物組和調節膽汁酸代謝也能逆轉LPS誘導的ZO-1和Occludin轉錄表達降低,并減輕黏膜急性炎癥[35],維持腸道的健康。仔豬早期斷奶會導致腸道黏膜萎縮和腸道功能障礙,外源補充鵝去氧膽酸可增強參與仔豬遠端小腸黏膜保護和屏障功能基因如ZO-1的表達,促進仔豬腸道健康[36]。此外,斷奶仔豬日糧中補充CDCA除了能有效提高斷奶仔豬空、回腸絨隱比,也可促進空腸中ZO-1、Occludin等緊密連接蛋白的表達,增強腸道消化能力,并顯著提高斷奶仔豬末重和平均日增重,大幅提高生產性能[37]。綜上所述,BAs對腸道黏膜屏障具有潛在保護作用,進而維持動物腸道的健康。
3.2 膽汁酸對腸道黏液屏障的影響
覆蓋腸上皮表面的黏液是腸道屏障完整性的關鍵組成部分之一(圖2)。黏蛋白2(mucin 2, MUC2)是腸道中最具代表性的分泌黏蛋白,是黏液的主要結構和功能成分,對保護腸道屏障至關重要。腸炎小鼠補充DCA和LCA后,MUC2表達量顯著增加,其中DCA通過EGFR通路、磷脂酰肌醇-3-激酶/蛋白激酶B通路等多條信號通路上調MUC2轉錄表達,最終促進腸道黏液屏障的穩固[38-39],表明BAs對黏液屏障有恢復作用。黏液中存在的消化酶、溶菌酶、黏多糖、抗菌肽和消化道分泌的其他成分同樣作為腸道屏障的重要組成成分。牛磺酸脫氧膽酸可顯著提高高脂飲食飼喂小鼠回腸中溶菌酶和腸堿性磷酸酶的表達水平,繼而溶菌酶高親和力結合LPS、腸堿性磷酸酶致使LPS去磷酸化,最終維護腸道屏障的完整性[40]。黏液屏障根據其緊密程度可分為內黏液層和外黏液層,內黏液層不斷被MUC2黏蛋白填充而較為緊密,可抵抗腸腔內有害菌及有毒物質進入上皮組織和血液;外黏液層較為疏松,許多微生物棲息于此,這些微生物的代謝產物參與形成黏液的主要成分,表明腸道各個屏障之間相互聯系、密不可分。綜上所述,BAs對黏液屏障的建立、維持和修復具有積極作用。
3.3 膽汁酸與宿主腸道微生物互作以調控腸道健康
動物腸道內棲息著多種共生微生物,主要包括黏膜微生物和腸腔微生物,分布在黏膜層和腸腔內部,形成一個多層次的微生物屏障系統(圖2),通過宿主-微生物互作在維持腸道結構、維護黏液穩定和調節黏膜免疫功能等方面發揮關鍵作用[41-42]。腸道微生物與BAs之間存在復雜的互作關系。一方面,腸道微生物能夠將PBAs轉化為SBAs,調節膽汁酸的代謝。另一方面,腸道微生物具有高度可塑性,BAs可通過直接或間接方式改變腸道微生物的種類和組成等。
3.3.1 腸道微生物修飾以擴大膽汁酸譜
BAs作為信號分子可參與全身代謝調節,但其形成及功能受腸道微生物區系組成的影響[43]。質譜分析表明由肝產生的PBAs經腸道微生物的水解、羥基化和氧化等多種轉化過程(表2)可轉變為SBAs及其衍生物,從而擴大膽汁酸種類的多樣性[44]。膽鹽水解酶(bile salt hydrolase, BSH)是一種由腸道微生物編碼的酶,可水解共軛PBAs的酰胺鍵,從偶聯的PBAs中去除牛磺酸或甘氨酸,將PBAs轉變為可被重吸收的SBAs[45]。BSH是負責關鍵解偶聯反應的唯一酶,對該酶的調控將對膽汁酸代謝調控起到決定性作用[45]。基于宏基因組學分析發現厚壁菌門、擬桿菌門和放線菌門可編碼BSH[45],其中影響BSH活性的主要菌包括梭狀芽孢桿菌屬、乳酸桿菌屬、雙歧桿菌屬、擬桿菌屬和腸球菌屬。不同微生物編碼的具有不同特異性的BSH均可限制艱難梭菌的定植,同時微生物衍生的CDCA、LCA及其差向異構體同樣抑制艱難梭菌的生長,某些PBAs還可直接作用艱難梭菌毒素,防止毒素與受體結合而損傷腸道內組織細胞,從而維持腸道健康[46-47]。腸道微生物中含有的羥基類固醇脫氫酶(hydroxysteroid dehydrogenase, HSDH)也能夠催化BAs上特定羥基的氧化、還原和異構化[48],將肝來源的PBAs轉變為微生物來源的SBAs,從而增加BAs組成的多樣性。
腸道微生物還可通過酰胺化作用將宿主來源BAs與多種氨基酸如丙氨酸、脯氨酸和酪氨酸偶聯生成新型氨基酸偶聯膽汁酸[49],也稱微生物偶聯膽汁酸。目前在小鼠等動物糞便中已發現多達118種新型氨基酸偶聯膽汁酸[45]。微生物偶聯膽汁酸也能結合FXR和GPBAR1并選擇性地調節膽汁酸信號傳導,促進腸道干細胞增殖分化、加速腸上皮細胞更新和修復腸道損傷,維護腸道健康。微生物組學和代謝組學分析表明,患結腸炎及結直腸癌的動物糞便中BAs含量顯著增多,提示腸道BAs組成的調節可能成為結腸炎及結直腸癌的一種新型治療方法[50-51]。不同類別的BAs對受體具有不同的親和力、發揮不同的功能。因此,破壞動物腸道微生物區系會導致BAs代謝紊亂,引發腸道疾病、損害腸道健康。日糧補充丁酸梭菌可改變仔豬腸道微生物區系組成,促進有益微生物定植,同時降低動物腸道內編碼BSH的微生物的豐度,增加共軛膽汁酸含量并改變回腸BAs譜,利于腸道穩態的構建[52]。此外,應激會改變家禽腸道菌群組成,引發膽汁酸代謝紊亂,影響禽類尤其肉禽的抗應激能力,因而日糧添加膽汁酸能夠有效緩解肉禽熱應激,提高肉禽產肉性能[53]。
3.3.2 膽汁酸可改變腸道微生物組成結構
BAs主要通過三種路徑改變腸道微生物區系組成。高濃度的疏水性BAs通過改變膜脂質組成、解離膜蛋白等膜損傷方式抑制病原微生物,促進腸道有益微生物區系建立并維持腸道健康與穩定。革蘭陰性菌尤其是擬桿菌對游離膽汁酸十分敏感[69-70]。BAs還可通過BAs受體,特別是核受體FXR的間接作用來改變腸道微生物的組成。FXR激活后抑制腸道微生物過度增殖導致的腸上皮損傷,缺乏FXR的小鼠回腸有害細菌大量增殖、上皮屏障受損[71]。BAs結合受體FXR還可調節成纖維細胞生長因子的表達來調節膽汁酸組成、提高腸道有益微生物豐度并抑制腸道炎癥[72],促進動物腸道健康。熊去氧膽酸通過誘導M2巨噬細胞極化、結合受體FXR來減少炎性細胞因子的產生[73],顯著緩解移植低初生重仔豬糞菌小鼠的腸道炎癥,維護腸道健康[73]。外源給予BAs也能改變腸道微生物的組成,補充CA或DCA均會增加小鼠腸道擬桿菌門相對豐度,而降低厚壁菌門相對豐度,促進腸道有益微生物區系的建立[74-75]。日糧中補充BAs也能改變奶山羊腸道微生物組成,促進腸道有益微生物群定植,維護腸道健康,提高產奶量[76]。斷奶仔豬日糧添加CDCA會增加其腸道內Prevotella 9和Prevotellaceae TCG-001的相對豐度,而降低Dorea屬相對豐度,顯著降低腹瀉發生率,改善腸道健康,從而提高最終體重和平均日增重[37]。對于難以提取膽汁酸的動物如家禽,外源補充其它動物膽汁酸也可發揮積極作用,如日糧中補充豬膽汁酸可豐富蛋雞腸道中的益生菌如乳酸桿菌和雙歧桿菌,促進腸道健康、改善蛋雞的血清脂質代謝,并且提高蛋雞產蛋性能[77]。綜上所述,膽汁酸與腸道微生物之間相互作用,共同維持動物腸道穩態與健康。
3.4 膽汁酸調節動物腸道免疫系統
腸道免疫屏障是動物抵抗有害病原體的第一道防線,最先且持續接觸各種病原微生物及其代謝產物,發揮監測和清除有害病原微生物、維持腸道穩態的重要作用(圖3)。腸道內連接免疫系統與其他成分的信號網絡對于腸道穩態及健康的維持極為重要。肝產生的PBAs和腸道微生物衍生的SBAs均作為信號分子發揮免疫調節作用以維持腸道穩態。
固有免疫系統具有檢測內外源微生物群和宿主全身代謝物的能力,同時啟動免疫反應消除有害病原體[78],腸道免疫結構多屬于固有免疫系統。生理水平的DCA和CDCA直接結合并激活線粒體融合蛋白2(mitochondrial fusion protein, MFN2),促進MFN2介導的線粒體融合來增強對病原體入侵的固有免疫反應[79]。抗菌肽是腸道免疫監測的重要介質,主要由回腸中的潘氏細胞表達,直接殺死或阻礙病原微生物生長,保護宿主腸道免受損傷。特異性敲除小鼠腸道中的膽汁酸依賴性轉錄因子會使其黏膜組織中的抗菌肽濃度降低[80],影響腸道免疫功能。CDCA和CA可激活FXR以上調小鼠回腸中的α-防御素[81];DCA也可激活FXR信號傳導抑制回腸潘氏細胞的功能[82]。
固有免疫和適應性免疫細胞均可表達BAs受體。其中FXR和GPBAR1與BAs高親和力結合并轉導一系列抗炎和免疫信號通路。GPBAR1和FXR能夠抑制NOD樣受體熱蛋白結構域相關蛋白3(NOD-like receptor thermal protein domain associated protein 3, NLRP3)的激活,提高腸道免疫力,維持腸道健康。DCA和LCA首先激活GPBAR1,活化的GPBAR1增加環磷酸腺苷的含量以激活蛋白激酶A,誘導NLRP3泛素化,抑制NLRP3炎癥小體激活[83]。FXR通過依賴或不依賴下游靶點SHP的方式,競爭性抑制NLRP3,阻止完整炎癥小體組裝[84]。巨噬細胞是腸道中重要的免疫細胞之一,BAs可激活受體GPBAR1減少M1巨噬細胞中促炎因子TNF、IL-6和IL-1β的分泌并促進分泌抗炎因子IL-10的M2巨噬細胞分化,以抵抗腸道炎癥、提高腸道免疫力[85]。巨噬細胞內源FXR被BAs激活后可調節腸道巨噬細胞的募集、極化以及與輔助性T細胞17(T helper cell 17, Th17)的串擾,并改善腸道炎癥、維持腸道健康[86]。LCA可增強豬腸上皮細胞中白細胞抗原的表達,同時與FXR受體結合招募更多的細胞毒性T淋巴細胞對抗流行性腹瀉病毒感染[87],增強腸道免疫力并維持腸道甚至整個機體健康。高脂低蛋白(LPHL)日糧會抑制草魚的生長性能和腸道發育,日糧補充BA可顯著改善LPHL飼喂草魚的采食量、飼料轉化效率,增加有益細菌乳酸菌和雙歧桿菌的數量,顯著提高補體蛋白和免疫球蛋白M的含量,同時顯著下調了腫瘤壞死因子-α、干擾素-γ2的轉錄表達,從而改善草魚生長和增強腸道免疫功能[88]。
生理水平的BAs有益于腸道穩態及機體健康,但高濃度BAs具有細胞毒性作用。因此,動物體內還含有額外的低親和力膽汁酸受體,保護腸道等器官組織免受BAs毒性損傷。LCA結合VDR可降低小鼠結腸炎導致的炎性細胞浸潤和杯狀細胞丟失[89],以緩解腸道炎癥損傷、促進腸道的健康。Th17和調節性T細胞(regulatory T cells, Tregs)群之間的平衡對于維持腸道免疫系統至關重要[90],眾多次級膽汁酸如LCA和DCA及其衍生物在輔助性T細胞的分化中起關鍵作用。3-臨氧膽酸(3-oxocholic acid)可直接結合視黃酸受體相關孤兒核受體γt(retinoic acid receptor-related orphan receptor γt, RORγt)并降低其活性,從而抑制Th17細胞分化[90];異石膽酸通過促進線粒體活性氧的產生和Treg細胞表面標志性蛋白叉頭框蛋白P3的表達來增加Treg細胞的分化[90]。SBAs也可以激活VDR來調節RORγt進而調控Treg細胞[67]。綜上所述,由腸道微生物衍生的SBAs對腸道免疫穩態至關重要,并且腸道各種屏障之間相互依賴、密不可分。
4 小 結
現已證明膽汁酸可通過改善腸道結構形態、維護腸道屏障完整、調節腸道微生物區系平衡及增強黏膜免疫等維持腸道內環境穩定、保護腸道健康,從而提高動物生產性能。但膽汁酸改善腸道健康的分子機制仍需進一步解析,尤其是宿主-膽汁酸-腸道微生物互作的研究仍不全面,膽汁酸影響腸道免疫功能的研究不夠深入。未來應采用多種動物模型和多組學技術方法全面解析膽汁酸調節動物腸道健康、改善生產性能的機制,為膽汁酸在實際生產中的應用提供理論依據。
參考文獻(References):
[1] CHIANG J, FERRELL J M. Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr, 2019, 39:175-200.
[2] ZHANG J, ZHANG X, LIU H, et al. Altered bile acid and correlations with gut microbiome in transition dairy cows with different glucose and lipid metabolism status[J]. J Dairy Sci, 2024, S0022-0302(24)00959-7.
[3] PABOIS O, LORENZ C D, HARVEY R D, et al. Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion[J]. J Colloid Interface Sci, 2019,556:266-277.
[4] URDANETA V, CASADESUS J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Front Med (Lausanne), 2017,4:163.
[5] FIORUCCI S, DISTRUTTI E, CARINO A, et al. Bile acids and their receptors in metabolic disorders[J]. Prog Lipid Res, 2021, 82: 101094.
[6] SHI L, JIN L, HUANG W. Bile acids, intestinal barrier dysfunction, and related diseases[J]. Cells, 2023, 12(14):1888.
[7] LI T, CHIANG J. Bile acids as metabolic regulators: an update[J]. Curr Opin Gastroenterol, 2023, 39(3): 249-255.
[8] MACIERZANKA A, TORCELLO-GOMEZ A, JUNGNICKEL C, et al. Bile salts in digestion and transport of lipids[J]. Adv Colloid Interface Sci, 2019, 274: 102045.
[9] YAN Y, LIU Y, ZENG C, et al. Effect of digestion on ursolic acid self-stabilized water-in-oil emulsion: Role of bile salts[J]. Foods, 2023, 12(19):3657.
[10] MULLISH B H, MCDONALD J, PECHLIVANIS A, et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection[J]. Gut, 2019, 68(10): 1791-1800.
[11] ZHENG X, CHEN T, JIANG R, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism[J]. Cell Metab, 2021, 33(4): 791-803.
[12] BOUZAS C, PASTOR R, GARCIA S, et al. Comparative effects of glucagon-like peptide-1 receptors agonists, 4-dipeptidyl peptidase inhibitors, and metformin on metabolic syndrome[J]. Biomed Pharmacother. 2023, 161: 114561.
[13] VELAZQUEZ-VILLEGAS L A, PERINO A, LEMOS V, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun, 2018, 9(1): 245.
[14] KRISHNAMURTHY H K, PEREIRA M, BOSCO J, et al. Gut commensals and their metabolites in health and disease[J]. Front Microbiol, 2023,14:1244293.
[15] VELAZQUEZ-VILLEGAS L A, PERINO A, LEMOS V, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun, 2018, 9(1): 245.
[16] YE C, WU C, LI Y, et al. Traditional medicine Xianglian pill suppresses high-fat diet-related colorectal cancer via inactivating TLR4/MyD88 by remodeling gut microbiota composition and bile acid metabolism[J]. J Ethnopharmacol, 2024,333:118411.
[17] WANG Q, SHEN W, SHAO W, et al. Berberine alleviates cholesterol and bile acid metabolism disorders induced by high cholesterol diet in mice[J]. Biochem Biophys Res Commun, 2024,719:150088.
[18] BAI X, DUAN Z, DENG J, et al. Ginsenoside Rh4 inhibits colorectal cancer via the modulation of gut microbiota-mediated bile acid metabolism[J/OL]. J Adv Res,(2024-07-03)[2024-05-30] https://www.sciencedirect.com/science/article/pii/S2090123224002650.
[19] SUN B, XIE W, LI X, et al. Inulin enhanced rifaximin-inhibited colon cancer pulmonary metastasis by flora-regulated bile acid pathway[J]. Int J Biol Macromol, 2024,275(Pt 1):133582.
[20] ZHU Y, SUN G, CIDAN Y, et al. Comprehensive multi-omic evaluation of the microbiota and metabolites in the colons of diverse swine breeds[J]. Animals (Basel), 2024,14(8):1221.
[21] ROWE J C, WINSTON J A. Collaborative metabolism: Gut microbes play a key role in canine and feline bile acid metabolism[J]. Vet Sci, 2024,11(2):94.
[22] YOUSEFI J, TAHERPOUR K, GHASEMI H A, et al. RETRACTED ARTICLE: Effects of emulsifier, betaine and L-carnitine on growth performance, immune response, gut morphology and nutrient digestibility in broiler chickens exposed to cyclic heat stress[J]. Br Poult Sci, 2023, 64(4): iii-xvi.
[23] ZAHID M U, KHALIQUE A, QAISRANI S N, et al. The effect of Acacia nilotica bark extract on growth performance, carcass characteristics, immune response, and intestinal morphology in broilers as an alternative to antibiotic growth promoter[J]. Anim Biosci, 2023, 36(7): 1059-1066.
[24] GU Y F, CHEN Y P, JIN R, et al. Dietary chitooligosaccharide supplementation alleviates intestinal barrier damage, and oxidative and immunological stress in lipopolysaccharide-challenged laying hens[J]. Poult Sci, 2022, 101(4): 101701.
[25] MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab, 2022, 33(4): 247-265.
[26] JAIN A K, STOLL B, BURRIN D G, et al. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(2): G218-G224.
[27] PERRONE E E, CHEN C, LONGSHORE S W, et al. Dietary bile acid supplementation improves intestinal integrity and survival in a murine model[J]. J Pediatr Surg, 2010, 45(6): 1256-1265.
[28] YANG J, VAN DIJK T H, KOEHORST M, et al. Intestinal farnesoid X receptor modulates duodenal surface area but does not control glucose absorption in mice[J]. Int J Mol Sci, 2023, 24(4):4132.
[29] SONG J, LI Q, LI P, et al. The effects of inulin on the mucosal morphology and immune status of specific pathogen-free chickens[J]. Poult Sci. 2018, 97(11): 3938-3946.
[30] RAIMONDI F, SANTORO P, BARONE M V, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(4):G906-G913.
[31] YAO B, HE J, YIN X, et al. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-kappaB dependent mechanism in Caco-2 cells[J]. Toxicol Lett, 2019, 316: 109-118.
[32] BUCKLEY A, TURNER J R. Cell biology of tight junction barrier regulation and mucosal disease[J]. Cold Spring Harb Perspect Biol, 2018, 10(1):a029314.
[33] SONG M, YE J, ZHANG F, et al. Chenodeoxycholic acid (CDCA) protects against the lipopolysaccharide-induced impairment of the intestinal epithelial barrier function via the FXR-MLCK pathway[J]. J Agric Food Chem, 2019, 67(32): 8868-8874.
[34] SONG M, ZHANG F, FU Y, et al. Tauroursodeoxycholic acid (TUDCA) improves intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets[J]. J Anim Sci Biotechnol, 2022, 13(1): 73.
[35] RUAN D, WU S, FOUAD A M, et al. Curcumin alleviates LPS-induced intestinal homeostatic imbalance through reshaping gut microbiota structure and regulating group 3 innate lymphoid cells in chickens[J]. Food Funct, 2022, 13(22): 11811-11824.
[36] DIEGO-CABERO N, MEREU A, MENOYO D, et al. Bile acid mediated effects on gut integrity and performance of early-weaned piglets[J]. BMC Vet Res, 2015, 11:111.
[37] SONG M, ZHANG F, CHEN L, et al. Dietary chenodeoxycholic acid improves growth performance and intestinal health by altering serum metabolic profiles and gut bacteria in weaned piglets[J]. Anim Nutr, 2021, 7(2):365-375.
[38] VAN DER LUGT B, VOS M, GROOTTE B M, et al. The effects of sulfated secondary bile acids on intestinal barrier function and immune response in an inflammatory in vitro human intestinal model[J]. Heliyon, 2022, 8(2): e8883.
[39] LEE H Y, CRAWLEY S, HOKARI R, et al. Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB,PI3K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway[J]. Int J Oncol, 2010, 36(4):941-953.
[40] SANTOS G M, ISMAEL S, MORAIS J, et al. Intestinal alkaline phosphatase: A review of this enzyme role in the intestinal barrier function[J]. Microorganisms, 2022, 10(4):746.
[41] GUPTA U, DEY P. Rise of the guardians: Gut microbial maneuvers in bacterial infections[J]. Life Sci, 2023, 330: 121993.
[42] IANCU M A, PROFIR M, ROSU O A, et al. Revisiting the intestinal microbiome and its role in diarrhea and constipation[J]. Microorganisms, 2023, 11(9):2177.
[43] CAI J, SUN L, GONZALEZ F J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis[J]. Cell Host Microbe, 2022, 30(3): 289-300.
[44] CHIANG J Y. Bile acid metabolism and signaling[J]. Compr Physiol, 2013, 3(3): 1191-1212.
[45] MOHANTY I, MANNOCHIO-RUSSO H, SCHWEER J V, et al. The underappreciated diversity of bile acid modifications[J]. Cell, 2024, 187(7): 1801-1818.
[46] WANG Y Z, MEI P C, BAI P R, et al. A strategy for screening and identification of new amino acid-conjugated bile acids with high coverage by liquid chromatography-mass spectrometry[J]. Anal Chim Acta, 2023, 1239: 340691.
[47] KISTHARDT S C, THANISSERY R, PIKE C M, et al. The microbial-derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota[J]. J Bacteriol, 2023, 205(9): e18023.
[48] DAHIYA M, JOVEL J, MONAGHAN T, et al. In silico analysis of changes in predicted metabolic capabilities of intestinal microbiota after fecal microbial transplantation for treatment of recurrent Clostridioides difficile Infection[J]. Microorganisms, 2023, 11(4):1078.
[49] DODEN H L, RIDLON J M. Microbial hydroxysteroid dehydrogenases: From alpha to omega[J]. Microorganisms, 2021, 9(3):469.
[50] ZHU Q F, WANG Y Z, AN N, et al. Alternating dual-collision energy scanning mass spectrometry approach: Discovery of novel microbial bile-acid conjugates[J]. Anal Chem, 2022, 94(5): 2655-2664.
[51] FU T, HUAN T, RAHMAN G, et al. Paired microbiome and metabolome analyses associate bile acid changes with colorectal cancer progression[J]. Cell Rep, 2023, 42(8): 112997.
[52] PAIK D, YAO L, ZHANG Y, et al. Human gut bacteria produce Tau(Eta)17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912.
[53] ZHANG X, YUN Y, LAI Z, et al. Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets[J]. J Anim Sci Biotechnol, 2023, 14(1): 36.
[54] ELKINS C A, MOSER S A, SAVAGE D C. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species[J]. Microbiology (Reading), 2001, 147(12): 3403-3412.
[55] TANAKA H, HASHIBA H, KOK J, et al. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization[J]. Appl Environ Microbiol, 2000, 66(6): 2502-2512.
[56] WIJAYA A, HERMANN A, ABRIOUEL H, et al. Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food enterococci[J]. J Food Prot, 2004, 67(12): 2772-2778.
[57] KITAHARA M, TAKAMINE F, IMAMURA T, et al. Assignment of Eubacterium sp, VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces[J]. Int J Syst Evol Microbiol, 2000, 50(3): 971-978.
[58] KITAHARA M, TAKAMINE F, IMAMURA T, et al. Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity[J]. Int J Syst Evol Microbiol, 2001, 51(1): 39-44.
[59] BURNS D A, HEAP J T, MINTON N P. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate[J]. J Bacteriol, 2010, 192(3): 657-664.
[60] HARRIS S C, DEVENDRAN S, MENDEZ-GARCIA C, et al. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243(T)[J]. Gut Microbes, 2018, 9(6): 523-539.
[61] EDENHARDER R, PFUTZNER A, HAMMANN R. Characterization of NAD-dependent 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and of NADP-dependent 7 beta-hydroxysteroid dehydrogenase from Peptostreptococcus productus[J]. Biochim Biophys Acta, 1989, 1004(2): 230-238.
[62] DODEN H, SALLAM L A, DEVENDRAN S, et al. Metabolism of Oxo-bile acids and characterization of recombinant 12alpha-hydroxysteroid dehydrogenases from bile acid 7alpha-dehydroxylating human gut bacteria[J]. Appl Environ Microbiol, 2018, 84(10):e00235-18.
[63] WANG P, CHEN Q, YUAN P, et al. Gut microbiota involved in desulfation of sulfated progesterone metabolites: A potential regulation pathway of maternal bile acid homeostasis during pregnancy[J]. Front Microbiol, 2022, 13: 1023623.
[64] JIANG M, XU M, REN S, et al. Transgenic overexpression of steroid sulfatase alleviates cholestasis[J]. Liver Res, 2017, 1(1): 63-69.
[65] ROBBEN J, JANSSEN G, MERCKX R, et al. Formation of delta 2- and delta 3-cholenoic acids from bile acid 3-sulfates by a human intestinal Fusobacterium strain[J]. Appl Environ Microbiol, 1989, 55(11): 2954-2959.
[66] BURCHAT N, VIDOLA J, PFREUNDSCHUH S, et al. Intestinal stearoyl-CoA desaturase-1 regulates energy balance via alterations in bile acid homeostasis[J]. bioRxiv, 2024, 12:575400.
[67] SONG X, SUN X, OH S F, et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis[J]. Nature, 2020, 577(7790): 410-415.
[68] QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations[J]. Nature, 2020, 579(7797): 123-129.
[69] DEVLIN A S, FISCHBACH M A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids[J]. Nat Chem Biol, 2015, 11(9): 685-690.
[70] WATANABE M, FUKIYA S, YOKOTA A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents[J]. J Lipid Res, 2017, 58(6): 1143-1152.
[71] INAGAKI T, MOSCHETTA A, LEE Y K, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci U S A, 2006, 103(10): 3920-3925.
[72] GADALETA R M, GARCIA-IRIGOYEN O, CARIELLO M, et al. Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor[J]. EBioMedicine, 2020, 54: 102719.
[73] PI Y, WU Y, ZHANG X, et al. Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization[J]. Microbiome, 2023, 11(1): 19.
[74] WANG S, DONG W, LIU L, et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis[J]. Mol Carcinog, 2019, 58(7): 1155-1167.
[75] XU M, CEN M, SHEN Y, et al. Deoxycholic Acid-Induced Gut Dysbiosis Disrupts Bile Acid Enterohepatic Circulation and Promotes Intestinal Inflammation[J]. Dig Dis Sci, 2021, 66(2): 568-576.
[76] YIN Q, YU J, LI J, et al. Enhancing milk quality and modulating rectal microbiota of dairy goats in starch-rich diet: the role of bile acid supplementation[J]. J Anim Sci Biotechnol, 2024, 15(1): 7.
[77] YANG B, HUANG S, ZHAO G, et al. Dietary supplementation of porcine bile acids improves laying performance, serum lipid metabolism and cecal microbiota in late-phase laying hens[J]. Anim Nutr, 2022,11:283-292.
[78] GONG T, LIU L, JIANG W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol, 2020, 20(2): 95-112.
[79] CHE Y, XU W, DING C, et al. Bile acids target mitofusin 2 to differentially regulate innate immunity in physiological versus cholestatic conditions[J]. Cell Rep, 2023, 42(1): 112011.
[80] WANG Y, YU Y, LI L, et al. Bile acid-dependent transcription factors and chromatin accessibility determine regional heterogeneity of intestinal antimicrobial peptides[J]. Nat Commun, 2023, 14(1): 5093.
[81] TREMBLAY S, ROMAIN G, ROUX M, et al. Bile acid administration elicits an intestinal antimicrobial program and reduces the bacterial burden in two mouse models of enteric infection[J]. Infect Immun, 2017, 85(6):e00942-16.
[82] LIU T C, KERN J T, JAIN U, et al. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation[J]. Cell Host Microbe, 2021, 29(6): 988-1001.
[83] 廖楚瑤,李思奇,張尊建,等. 腸道疾病中膽汁酸及其受體對NLRP3炎癥小體調控作用的研究進展[J]. 藥學進展, 2022, 46(3): 218-225.
LIAO C Y, LI S Q, ZHANG Z J, et al. Research progress in the regulatory of bile acids and bile acids-activated receptors on NLRP3 inflammasome in intestinal diseases[J]. Advances in Pharmacy, 2022, 46(3): 218-225.(in Chinese)
[84] 聶 源. 基于腸道菌-肝膽汁酸軸探究熊果酸抑制肝纖維化的作用機制[D].南昌: 南昌大學, 2022.
NIE Y. Exploring the mechanism of ursolic acid in inhibiting liver fibrosis based on the intestinal microbiota-hepatobiliac axis[D].Nanchang: Nanchang University, 2022.(in Chinese)
[85] HANG S, PAIK D, YAO L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation[J]. Nature, 2019, 576(7785): 143-148.
[86] DONG X, QI M, CAI C, et al. Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression[J]. JCI Insight, 2024, 9(2):e170428.
[87] XING J H, NIU T M, ZOU B S, et al. Gut microbiota-derived LCA mediates the protective effect of PEDV infection in piglets[J]. Microbiome, 2024, 12(1): 20.
[88] PENG X R, FENG L, JIANG W D, et al. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-kappaB and TOR signalling pathways in on-growing grass carp (Ctenopharyngodon idella): Enhancement the effect of protein-sparing by dietary lipid[J]. Fish Shellfish Immunol, 2019, 92:552-569.
[89] KUBOTA H, ISHIZAWA M, KODAMA M, et al. Vitamin D receptor mediates attenuating fffect of lithocholic acid on dextran sulfate sodium induced colitis in mice[J]. Int J Mol Sci, 2023, 24(4):3517.
[90] LEE G R. The balance of Th17 versus treg cells in autoimmunity[J]. Int J Mol Sci, 2018, 19(3):730.
(編輯 范子娟)