


摘 要: Hedgehog(HH)信號(hào)通路是參與胚胎形成的關(guān)鍵途徑之一,它在從果蠅到人類(lèi)的進(jìn)化過(guò)程中廣泛分布且保持高度保守性,對(duì)多種器官的發(fā)育起到了至關(guān)重要的作用。研究指出,HH信號(hào)通路在卵巢卵泡的生長(zhǎng)、顆粒細(xì)胞的增殖、卵母細(xì)胞的成熟、類(lèi)固醇激素的合成以及排卵過(guò)程中扮演著重要的調(diào)節(jié)角色。本文基于現(xiàn)有研究成果,詳細(xì)回顧了HH信號(hào)通路在卵巢卵泡生長(zhǎng)、卵母細(xì)胞成熟、排卵以及類(lèi)固醇激素合成中的調(diào)控功能,并概述了由于HH信號(hào)通路異常導(dǎo)致生殖能力下降的幾種卵巢疾病的最新研究動(dòng)態(tài),旨在為提升雌性繁殖能力及卵巢疾病的治療提供理論支持。
關(guān)鍵詞: Hedgehog信號(hào)通路;卵巢;生殖能力;卵泡發(fā)育;類(lèi)固醇生成
中圖分類(lèi)號(hào):
S814.1; Q492.5"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào): 0366-6964(2025)03-0969-10
收稿日期:2024-08-29
基金項(xiàng)目:國(guó)家自然科學(xué)基金面上項(xiàng)目(32272849)
作者簡(jiǎn)介:滅列·馬達(dá)尼牙提(1996-),女,哈薩克族,新疆阿勒泰人,碩士生,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:3528685906@qq.com;孫 萌(2004-),男,山東臨沂人,本科生,主要從事動(dòng)物科學(xué)研究,E-mail:3624815055@qq.com。滅列·馬達(dá)尼牙提與孫萌為同等貢獻(xiàn)作者
*通信作者:褚瑰燕,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:guiyanchu@nwafu.edu.cn
The Regulatory Function of the Hedgehog Signaling Pathway in Follicle Development and Steroidogenesis of Animal
Ovary
MIELIE·Madaniyati, SUN Meng, CHU" Guiyan*
(College of Animal Science and Technology,Northwest Aamp;F University, Yangling 712100, China)
Abstract: "The Hedgehog (HH) signaling pathway is one of the key pathways involved in embryogenesis, widely distributed and highly conserved throughout the evolutionary process from fruit flies to humans, playing a crucial role in the development of various organs. Studies have indicated that the HH signaling pathway plays an important regulatory role in the growth of ovarian follicles, proliferation of granulosa cells, maturation of oocytes, synthesis of steroid hormones, and process of ovulation. Based on the existing research findings, this article provides a detailed review of the regulatory functions of the HH signaling pathway in the growth of ovarian follicles, maturation of oocytes, ovulation, and synthesis of steroid hormones, as well as an overview of the latest research trends on several ovarian diseases that lead to a decline in fertility due to abnormalities in the HH signaling pathway, aiming to provide theoretical support for enhancing female reproductive capacity and the treatment of ovarian diseases.
Keywords: Hedgehog signaling pathway; ovary; fertility; follicle development; steroidogenesis
*Corresponding author: CHU Guiyan, E-mail:guiyanchu@nwafu.edu.cn
畜牧業(yè)在國(guó)民經(jīng)濟(jì)中扮演著重要角色,而家畜的繁殖效率是其發(fā)展的主要限制因素。發(fā)情是哺乳動(dòng)物繁殖周期的開(kāi)始,是繁殖力的限制因素,它涉及到卵巢卵泡發(fā)育、排卵和激素分泌,在哺乳動(dòng)物的繁殖生涯中起著至關(guān)重要的作用。發(fā)情主要受下丘腦-垂體-卵巢軸的調(diào)控,雌激素對(duì)下丘腦的調(diào)控有正、負(fù)反饋?zhàn)饔茫殉差w粒細(xì)胞作為卵巢中有重要作用的體細(xì)胞,通過(guò)分泌性腺激素即孕酮和雌激素,來(lái)維持卵巢的生理功能[1-2]。Hedgehog(HH)蛋白作為關(guān)鍵的形態(tài)發(fā)生因子和有絲分裂原,調(diào)控著胚胎發(fā)育和組織形態(tài),從昆蟲(chóng)到哺乳動(dòng)物的進(jìn)化中高度保守。HH信號(hào)主要因其在胚胎發(fā)育過(guò)程中的重要作用而為人所知[3]。HH信號(hào)分子在各種組織中差異表達(dá),具有組織特異性調(diào)節(jié)功能,它在成年生命中,特別是在性腺功能方面也起著重要的調(diào)節(jié)作用[4]。值得注意的是,HH信號(hào)通路在卵泡發(fā)育、類(lèi)固醇生成和排卵等生殖過(guò)程中起著至關(guān)重要的作用[5-6],HH信號(hào)通路被認(rèn)為可能是哺乳動(dòng)物發(fā)情期啟動(dòng)失敗的關(guān)鍵潛在信號(hào)通路。此外,HH信號(hào)的異常激活已在癌癥中被發(fā)現(xiàn)[7],其失調(diào)與許多腫瘤疾病的發(fā)生和發(fā)展有關(guān),此外,卵巢衰老也與此密切相關(guān)。當(dāng)前,HH信號(hào)通路在卵巢發(fā)育中的具體分子機(jī)制尚未完全明確。本文綜述了HH信號(hào)通路在卵巢生理和病理學(xué)研究的最新進(jìn)展,并對(duì)未來(lái)的研究方向進(jìn)行了展望,為提高雌性繁殖性能和治療卵巢相關(guān)疾病提供新思路。
1 Hedgehog信號(hào)通路概述
1980年,HH基因首次在果蠅中被發(fā)現(xiàn),HH信號(hào)在物種間是高度保守的,它在調(diào)節(jié)發(fā)育和各種生理過(guò)程以及疾病中發(fā)揮重要作用[8-9], 包括正常的干細(xì)胞增殖和分化。在哺乳動(dòng)物中,HH信號(hào)分子包括3個(gè)配體——sonic hedgehog(SHH)、indian hedgehog(IHH)和desert hedgehog(DHH);2個(gè)膜受體(patched)——PTCH1、PTCH2;1個(gè)關(guān)鍵信號(hào)轉(zhuǎn)換器(smoothened,SMO);3個(gè)轉(zhuǎn)錄因子膠質(zhì)瘤相關(guān)癌基因同源物(glioma-associated oncogene,GLI)——GLI1、GLI2、GLI3。HH信號(hào)通路通過(guò)一系列修飾后的HH蛋白來(lái)介導(dǎo)細(xì)胞發(fā)揮重要作用。HH蛋白在C端通過(guò)膽固醇修飾,在N端通過(guò)櫚酸酯修飾,從難溶的多肽前體形式轉(zhuǎn)變?yōu)榭扇苄缘娜蹑I多聚體形式。經(jīng)過(guò)修飾的HH蛋白由大分子跨膜蛋白(dispatched,DISP1)分泌,DISP1蛋白與受體蛋白PTCH結(jié)合,解除其對(duì)SMO蛋白抑制作用,釋放出SMO蛋白,激活下游GLI家族的轉(zhuǎn)錄因子(transcription factors,TFs),GLI TFs轉(zhuǎn)運(yùn)到細(xì)胞核,并啟動(dòng)靶基因的轉(zhuǎn)錄,從而激活細(xì)胞下游HH信號(hào)通路[3,10](圖1)。轉(zhuǎn)錄因子GLI蛋白作為HH信號(hào)通路激活的標(biāo)志因子[11],其加工、活性和定位受到多種蛋白質(zhì)調(diào)控,如融合抑制蛋白(suppressor of fused,SUFU)、驅(qū)動(dòng)蛋白(kinesin family member 7,KIF7)和蛋白激酶A(protein kinase A,PKA)等。
HH配體具有共同的受體和下游信號(hào)分子,在各種器官和組織中HH分子之間存在冗余功能。然而,各個(gè)HH配體也發(fā)揮著不同的生理作用[3,10]。HH信號(hào)轉(zhuǎn)導(dǎo)的主要作用僅限于胚胎發(fā)育,特別是在器官發(fā)生中。SHH在神經(jīng)元發(fā)育中起著至關(guān)重要的作用,DHH作用于性腺發(fā)育和類(lèi)固醇生成,IHH調(diào)節(jié)各種發(fā)育功能,包括骨骼發(fā)育,以及卵巢類(lèi)固醇生成和卵泡發(fā)育[12]。HH信號(hào)通路的異常會(huì)引發(fā)各種出生缺陷,有研究在成年期的腫瘤發(fā)生過(guò)程中,檢測(cè)到了HH信號(hào)的重新激活,因而抑制HH信號(hào)已成為癌癥治療的靶點(diǎn)[13]。研究表明,HH信號(hào)轉(zhuǎn)導(dǎo)調(diào)節(jié)成年期的性腺功能,包括類(lèi)固醇生成、精子發(fā)生和卵泡生成[5-6,14]。HH信號(hào)傳導(dǎo)缺失可導(dǎo)致性腺發(fā)育障礙和功能不全[15-16]。
2 Hedgehog信號(hào)通路在卵巢生理中的作用
卵巢生理由下丘腦-垂體-卵巢(hypothalamic-pituitary-ovarian,HPO)軸調(diào)控,在下丘腦中,HH信號(hào)通路的激活可以促進(jìn)性腺釋放激素(gonadotropin-releasing hormone,GnRH)的合成和釋放[17]。GnRH釋放到垂體-門(mén)脈系統(tǒng)中,對(duì)排卵前黃體生成素(luteinizing hormone,LH)產(chǎn)量峰值的形成是必要的。GnRH促進(jìn)垂體釋放促卵泡激素(follicular stimulating hormone,F(xiàn)SH)和黃體生成素,這些激素隨后進(jìn)入血液并作用于卵巢,促進(jìn)配子的發(fā)生和性類(lèi)固醇的生成[18](表1)。性類(lèi)固醇激素又反饋到垂體和下丘腦,從而調(diào)節(jié)不同激素的釋放模式。
2.1 調(diào)控卵泡發(fā)育
卵泡是卵巢的功能單位,由卵母細(xì)胞、顆粒細(xì)胞和卵泡膜細(xì)胞組成。大量研究表明,HH信號(hào)通路和卵泡發(fā)育之間存在重要聯(lián)系,并且卵泡中表達(dá)HH基因。卵泡發(fā)育需要卵母細(xì)胞、顆粒細(xì)胞和黃體細(xì)胞之間的通訊。HH靶基因,如PTCH1和GLI1,在周?chē)狞S體細(xì)胞中表達(dá),并且這種表達(dá)受到HH信號(hào)抑制劑Cyclopamine的抑制。在排卵前卵泡中,HH的顯著喪失和誘導(dǎo)的靶基因表達(dá)是同步的,證明了HH信號(hào)在顆粒細(xì)胞和發(fā)育中的黃體細(xì)胞之間的通訊作用[19]。生長(zhǎng)卵泡中的顆粒細(xì)胞(granulosa cells,GCs)作為HH信號(hào)的來(lái)源,表達(dá)DHH和IHH,它們對(duì)膜前體細(xì)胞的增殖和分化至關(guān)重要[20]。Ren等[21]研究發(fā)現(xiàn),在小鼠生命早期HH信號(hào)的過(guò)度激活改變了基因表達(dá)和血管發(fā)育,這與無(wú)排卵卵泡的終身發(fā)育相關(guān),其中卵泡不能正常成熟。卵巢HH信號(hào)調(diào)節(jié)的另一個(gè)重要方面是顆粒細(xì)胞和卵母細(xì)胞之間的雙向信號(hào)傳導(dǎo)作用。雖然HH信號(hào)通路的成分位于卵巢卵泡的體細(xì)胞中,但HH分子的表達(dá)受卵母細(xì)胞生長(zhǎng)分化因子(growth differentiation factor 9,GDF9)的調(diào)控。據(jù)報(bào)道,DHH、IHH和GLI1的表達(dá)在缺乏卵母細(xì)胞的GDF9KO小鼠卵巢中顯著降低[20]。當(dāng)GDF9被添加到卵母細(xì)胞耗盡的GDF9KO卵巢中時(shí),DHH、IHH和GLI1的表達(dá)增加,表明GDF9在GCs中HH配體的表達(dá)中起著至關(guān)重要的作用[22]。HH信號(hào)也可能在保護(hù)卵泡儲(chǔ)備中發(fā)揮重要作用,Jiang等[23]研究表明,用一種HH信號(hào)抑制劑GANT61抑制HH信號(hào)可降低小鼠卵巢原始卵泡(primordial follicles,PDFs)計(jì)數(shù)。然而,還需要進(jìn)一步的研究來(lái)闡明其潛在的機(jī)制。叉頭轉(zhuǎn)錄因子O亞型3(forkhead box O-3,F(xiàn)OXO3)是一種已知的受PI3K/AKT信號(hào)通路控制的轉(zhuǎn)錄因子,被認(rèn)為是卵巢休眠和初始卵泡激活的關(guān)鍵調(diào)節(jié)劑。有研究表明,HH信號(hào)通路與FOXO3相互作用來(lái)調(diào)控卵泡發(fā)育[1]。
2.2 調(diào)控卵母細(xì)胞成熟
在卵泡發(fā)生過(guò)程中,卵原細(xì)胞進(jìn)行減數(shù)分裂,形成成熟的卵母細(xì)胞。HH信號(hào)通路對(duì)卵母細(xì)胞產(chǎn)生的調(diào)控因素包括卵泡干細(xì)胞(follicle stem cells,F(xiàn)SCs)的數(shù)量和狀態(tài)。FSCs對(duì)飲食誘導(dǎo)的信號(hào)(如HH和胰島素信號(hào))非常敏感。持續(xù)的HH信號(hào)通過(guò)PTCH依賴(lài)的SMO獨(dú)立機(jī)制誘導(dǎo)FSCs中的自噬,從而導(dǎo)致FSCs喪失和早期不育。在衰老過(guò)程中,HH依賴(lài)的自噬增加,觸發(fā)FSCs喪失并導(dǎo)致生殖停滯[24]。在卵母細(xì)胞成熟方面,Wang等[25]體外培養(yǎng)臺(tái)灣省的土著山羊卵母細(xì)胞,發(fā)現(xiàn)在SHH補(bǔ)充培養(yǎng)基中,SHH可以增加卵母細(xì)胞中磷酸化細(xì)胞外調(diào)節(jié)蛋白激酶1/2(extracellular signal-regulated kinase 1/2,ERK1/2)的mRNA水平,促進(jìn)核成熟,并且SHH對(duì)核成熟的影響可以通過(guò)抑制劑Cyclopamine來(lái)抑制。Lee等[26]研究發(fā)現(xiàn),使用10-9 mol·L-1褪黑素對(duì)豬卵母細(xì)胞進(jìn)行體外成熟(in vitro maturation,IVM)可以促進(jìn)卵丘膨脹,并通過(guò)SHH信號(hào)通路調(diào)節(jié)相關(guān)基因和蛋白的表達(dá)。此外,添加SHH信號(hào)通路抑制劑Cyclopamine可以逆轉(zhuǎn)褪黑激素對(duì)卵丘膨脹的促進(jìn)作用。Lee等[27]通過(guò)使用亮甲酚藍(lán)(brilliant cresyl blue,BCB)染色來(lái)評(píng)估豬卵母細(xì)胞質(zhì)量,高質(zhì)量的卵母細(xì)胞在體外成熟過(guò)程中具有更高的發(fā)育能力,并且能夠更好地?cái)U(kuò)增周?chē)亚鸺?xì)胞。此外,高質(zhì)量的卵母細(xì)胞在體外成熟過(guò)程中表達(dá)了更高水平的SHH信號(hào)通路相關(guān)蛋白。因此,這項(xiàng)研究表明SHH信號(hào)通路可能參與調(diào)控卵母細(xì)胞成熟和卵丘細(xì)胞擴(kuò)增。Liu等[28]研究證實(shí)了Cyclopamine對(duì)小鼠卵母細(xì)胞成熟沒(méi)有顯著影響,但會(huì)降低早期胚胎發(fā)育。Guo等[29]研究發(fā)現(xiàn),黃芩苷通過(guò)抑制細(xì)胞凋亡、調(diào)節(jié)線(xiàn)粒體活性和激活SHH信號(hào)基因來(lái)促進(jìn)豬卵母細(xì)胞成熟并提高豬胚胎的體外發(fā)育能力。Jeong等[30]研究表明,在低質(zhì)量豬卵母細(xì)胞體外成熟中補(bǔ)充SHH蛋白可以促進(jìn)其顆粒細(xì)胞擴(kuò)張、核成熟和胚胎發(fā)育能力。此外,茴香腦和芍藥苷都可通過(guò)SHH信號(hào)通路降低氧化應(yīng)激,從而促進(jìn)卵母細(xì)胞成熟和胚胎發(fā)育[31-32]。
2.3 調(diào)控排卵
哺乳動(dòng)物中,垂體釋放促卵泡激素促進(jìn)卵泡生長(zhǎng)和性類(lèi)固醇的產(chǎn)生,而LH在雌二醇的循環(huán)水平高到足以促進(jìn)卵泡成熟時(shí)觸發(fā)成熟卵泡的排卵。卵巢體細(xì)胞中HH信號(hào)轉(zhuǎn)導(dǎo)的異位激活通過(guò)過(guò)表達(dá)SMO的顯性活性等位基因?qū)е侣殉矡o(wú)排卵,并伴有血管發(fā)育缺陷。這些觀察結(jié)果表明,盡管HH信號(hào)傳導(dǎo)的喪失對(duì)卵巢的正常發(fā)育無(wú)害,但過(guò)多的HH信號(hào)傳導(dǎo)會(huì)阻礙卵巢功能。對(duì)這些HH信號(hào)傳導(dǎo)過(guò)多的卵巢的進(jìn)一步分析顯示:SHH mRNA和腎上腺特異性基因(包括21-羥化酶(21-hydroxylase,CYP21A)、11β-羥化酶(11β-hydroxylase,CYP11B1)和17α-羥化酶(17 alpha-hydroxylase,CYP17A))以及由這些基因編碼的蛋白的表達(dá)增加[5,20]。這些發(fā)現(xiàn)表明,激活卵巢中的HH會(huì)引起卵巢細(xì)胞分化為腎上腺皮質(zhì)樣細(xì)胞。在小鼠成年卵巢中,竇卵泡的顆粒細(xì)胞產(chǎn)生DHH和IHH配體,而它們的靶標(biāo)PTCH1、SMO、GLI1、GLI2和GLI3駐留在卵泡膜細(xì)胞、顆粒細(xì)胞和卵巢基質(zhì)中[20]。有趣的是,這些HH信號(hào)轉(zhuǎn)導(dǎo)成分的表達(dá)實(shí)際上是在排卵期間丟失。Ren等[21]對(duì)活性致癌突變體(signal transducer smoothened,SmoM2)小鼠卵巢中的顆粒細(xì)胞進(jìn)行了體外培養(yǎng),并發(fā)現(xiàn)在激活SmoM2表達(dá)后,顆粒細(xì)胞對(duì)LH的反應(yīng)受到抑制,從而影響了孕酮的產(chǎn)生并導(dǎo)致排卵的失敗。Aad等[33]研究探討了在選育雙胞胎排卵和分娩的牛的卵泡中,胰島素樣生長(zhǎng)因子(insulin-like growth factor,IGF)系統(tǒng)和HH系統(tǒng)之間的聯(lián)系,發(fā)現(xiàn)HH系統(tǒng)與IGF系統(tǒng)之間存在相互作用,IGF可以調(diào)節(jié)HH蛋白的表達(dá)和信號(hào)傳導(dǎo),從而影響卵泡發(fā)育和排卵過(guò)程。Park等[34]研究發(fā)現(xiàn),在HH信號(hào)通路中,轉(zhuǎn)錄因子GLI1和刺猬相互作用蛋白(hedgehog-interacting protein,HHIP)在黃體中表達(dá),并起到轉(zhuǎn)錄激活或抑制劑的作用。這條通路在卵泡排卵后和黃體開(kāi)始真正發(fā)育之前被下調(diào)。可以推測(cè),參與細(xì)胞生長(zhǎng)和增殖的HH信號(hào)通路調(diào)控卵巢細(xì)胞的充分分化和正常的卵泡發(fā)育對(duì)于排卵和隨后的黃體形成至關(guān)重要。
2.4 調(diào)節(jié)類(lèi)固醇激素合成
卵巢中的HH信號(hào)通路在調(diào)節(jié)類(lèi)固醇的生物合成中發(fā)揮重要作用。類(lèi)固醇激素合成的第一步是在類(lèi)固醇合成急性調(diào)節(jié)蛋白(steroidogenic acute regulatory protein,StAR)的作用下,將膽固醇從卵泡內(nèi)膜細(xì)胞線(xiàn)粒體外膜轉(zhuǎn)移至內(nèi)膜。在線(xiàn)粒體內(nèi)膜,膽固醇在細(xì)胞色素P450膽固醇側(cè)鏈切割酶(cytochrome P450 cholesterol side-chain cleavage enzyme,CYP11A1)的作用下轉(zhuǎn)化為孕烯醇酮,隨后3β-羥基類(lèi)固醇脫氫酶(3β-hydroxysteroid dehydrogenase,3β-HSD)催化下形成孕酮(progesterone,P4)。類(lèi)固醇17α-羥化酶(steroid 17 alpha-hydroxylase,CYP17A1)催化P4轉(zhuǎn)變?yōu)樾巯┒巯┒M(jìn)入顆粒細(xì)胞,并最終在芳香化酶(aromatase cytochrome P450 19A1,CYP19A1)的作用下轉(zhuǎn)化為雌二醇(estradiol,E2)。HH配體的膽固醇修飾是HH信號(hào)傳導(dǎo)活性的基礎(chǔ),細(xì)胞內(nèi)HH信號(hào)轉(zhuǎn)導(dǎo)也需要膽固醇生物合成[19]。Tang等[35]研究了HH信號(hào)在膽固醇代謝中的作用和潛在機(jī)制,HH信號(hào)的激活通過(guò)上調(diào)類(lèi)固醇生成酶的表達(dá)誘導(dǎo)膽固醇轉(zhuǎn)化為P4和E2。此外,抑制HH信號(hào)不僅會(huì)減弱HH誘導(dǎo)的類(lèi)固醇生成酶的表達(dá),還會(huì)減弱膽固醇向P4和E2的轉(zhuǎn)化。GLI3是HH誘導(dǎo)的CYP11A1表達(dá)所必需的,而GLI2介導(dǎo)3β-HSD和CYP19A1的誘導(dǎo)。其他研究發(fā)現(xiàn)HH信號(hào)傳導(dǎo)與卵巢類(lèi)固醇生成之間存在相關(guān)性。Cyclopamine對(duì)HH信號(hào)轉(zhuǎn)導(dǎo)通路的抑制可提高培養(yǎng)顆粒細(xì)胞中孕酮的產(chǎn)生[4]。IHH作為HH信號(hào)通路的配體之一,其發(fā)揮作用需要膽固醇的參與,只有經(jīng)過(guò)膽固醇在其N(xiāo)端的修飾才能正常分泌至靶細(xì)胞[36],激活HH信號(hào)通路。IHH可以調(diào)控脫氫表雄酮、睪酮和孕酮的合成,這3種類(lèi)固醇激素是雌激素合成的前體物質(zhì)[12]。綜上可知,卵巢類(lèi)固醇生成受HH信號(hào)通路的調(diào)控,HH基因的缺失或抑制會(huì)影響類(lèi)固醇的生成。
3 卵巢病理中的Hedgehog信號(hào)通路
卵巢病理受到多種因素的調(diào)控,包括遺傳因素、內(nèi)分泌調(diào)節(jié)、細(xì)胞信號(hào)通路以及局部微環(huán)境等。這些因素共同影響著卵巢組織的生長(zhǎng)、分化、發(fā)育和功能。HH信號(hào)通路的破壞導(dǎo)致嚴(yán)重疾病,其失調(diào)與許多腫瘤疾病的發(fā)生和發(fā)展有關(guān)[37]。其中HH信號(hào)通路的破壞可能是導(dǎo)致生殖能力下降相關(guān)疾病的致病因素之一,以下幾種是與HH信號(hào)通路相關(guān)的卵巢疾病(表2)。
3.1 多囊卵巢綜合征
多囊卵巢綜合征(polycystic ovarian syndrome,PCOS)是常見(jiàn)的內(nèi)分泌紊亂和與代謝風(fēng)險(xiǎn)增加相關(guān)的生殖系統(tǒng)疾病,也是導(dǎo)致生殖力下降或不育的主要原因。許多證據(jù)表明,PCOS與HH信號(hào)通路異常激活有關(guān)。卵巢GCs的異常發(fā)育是PCOS的原因之一。Li等[38]使用RNA-seq進(jìn)行研究,以檢測(cè)3名PCOS患者和4名正常對(duì)照者之間卵巢GCs中的不同基因表達(dá)水平;為驗(yàn)證RNA-seq數(shù)據(jù),收集了22例PCOS患者和21例排卵正常對(duì)照的GCs進(jìn)行RT-PCR分析,發(fā)現(xiàn)HH成員IHH和PTCH2在PCOS 組織(PT)中異常高表達(dá);此外,Cyclopamine可以減少PCOS卵巢GCs的凋亡。這些結(jié)果表明,HH信號(hào)通路的異常激活,特別是IHH信號(hào),可能對(duì)PCOS產(chǎn)生深遠(yuǎn)影響。Xu等[39]采用脫氫表雄酮(dehydroisoandrosterone,DHEA)注射液建立PCOS大鼠模型,發(fā)現(xiàn)免疫相關(guān)蛋白(GTPase,IMAP Family Member 7,GIMAP7)主要位于GCs中,且在PCOS大鼠卵巢GCs中大量表達(dá);而GIMAP7沉默則降低血糖水平、胰島素抵抗(insulin resistance,IR)水平和卵泡數(shù)量。Xu等[39]注意到,GIMAP7抑制了SHH信號(hào)通路,GIMAP7沉默增加了SHH信號(hào)通路下游基因SHH、SMO和GLI1的表達(dá)。該研究證實(shí)了GIMAP7通過(guò)抑制SHH信號(hào)通路促進(jìn)PCOS卵巢顆粒細(xì)胞氧化應(yīng)激和凋亡。HHIP最初被確定為HH配體的抑制劑,有研究發(fā)現(xiàn),血清HHIP濃度被與糖尿病和代謝異常有關(guān)。研究HHIP與PCOS發(fā)生發(fā)展之間的關(guān)系非常重要,Zhou等[40]通過(guò)分析PCOS患者和健康人腹部脂肪干細(xì)胞的基因表達(dá)譜,篩選出與PCOS相關(guān)的差異表達(dá)基因(differentially expressed genes,DEGs)。在這些DEGs中,發(fā)現(xiàn)HHIP的表達(dá)變化最為顯著,因此確定HHIP與PCOS相關(guān)。同時(shí)發(fā)現(xiàn),HHIP與PCOS和IR密切相關(guān),并提出HHIP可能作為PCOS和IR的潛在生物標(biāo)志物。這些研究結(jié)果有助于深入理解PCOS和IR的發(fā)病機(jī)制,并為相關(guān)疾病的診斷和治療提供新的思路。
3.2 卵巢早衰和卵巢功能不全
卵巢過(guò)早衰老會(huì)縮短畜牧生產(chǎn)和人類(lèi)生殖年限。隨著年齡的增長(zhǎng),雌性動(dòng)物的生殖能力自然下降,卵巢衰老對(duì)雌性動(dòng)物的生殖生理和生產(chǎn)性能具有顯著影響。卵巢衰老與細(xì)胞水平上的衰老和功能退化有關(guān),其主要特征是卵巢儲(chǔ)備功能下降[41]、卵母細(xì)胞質(zhì)量和數(shù)量下降[42]、卵泡不斷喪失以及性激素分泌下降[43]。越來(lái)越多的研究揭示,HH信號(hào)通路在卵巢衰老過(guò)程中發(fā)揮重要的調(diào)節(jié)作用。卵巢功能衰竭與卵巢功能不全(primary ovarian insufficiency,POI)密切相關(guān)。POI的主要特征是育齡婦女卵巢功能的喪失,由許多基因和非遺傳因素促成其發(fā)生。卵泡耗竭是卵巢早衰(premature ovarian failure,POF)和原發(fā)性POI的原因之一[44]。因此,維持一定數(shù)量的雌性生殖干細(xì)胞(female germline stem cells,F(xiàn)GSCs)是產(chǎn)生卵母細(xì)胞和補(bǔ)充原始卵泡庫(kù)的最佳選擇。調(diào)節(jié)FGSCs增殖或干性的機(jī)制可能有助于恢復(fù)卵巢功能。Jiang等[23]研究發(fā)現(xiàn),生理衰老和POF模型中HH信號(hào)在卵巢中的活性降低。在體外,用GANT61治療卵巢后,阻斷HH通路會(huì)導(dǎo)致卵泡發(fā)育障礙并耗盡卵巢生殖細(xì)胞和FGSCs。GANT61抑制HH信號(hào)通路可以通過(guò)氧化損傷和細(xì)胞凋亡來(lái)減少原始卵泡數(shù)量并降低FGSCs的繁殖能力或干性。卵泡功能障礙與卵巢炎癥[45]有關(guān),活性氧(reactive oxygen species,ROS)的積累可加劇衰老[46]的過(guò)程。白藜蘆(resveratrol,RES)能有效清除ROS積累。Jiang等[47]用RES灌洗POF小鼠,體外將POF卵巢與RES和/或GANT61共培養(yǎng),發(fā)現(xiàn)RES能顯著提高POF小鼠的體重、卵巢重量和卵泡數(shù)量,降低卵泡閉鎖率。同時(shí),HH信號(hào)通路的阻斷逆轉(zhuǎn)了RES對(duì)FGSCs的保護(hù)作用。表明RES通過(guò)緩解氧化應(yīng)激和炎癥以及HH信號(hào)通路的機(jī)制,有效改善了POF模型的卵巢功能和FGSCs的生產(chǎn)能力。另外有研究表明,TGF-β-CREB-Hedgehog信號(hào)轉(zhuǎn)導(dǎo)軸允許關(guān)鍵代謝組織與生殖系統(tǒng)進(jìn)行通訊,以調(diào)節(jié)卵母細(xì)胞質(zhì)量和生殖衰退速度[48]。
3.3 卵巢癌
卵巢癌是雌性生殖道最致命的腫瘤類(lèi)型[49]。HH信號(hào)轉(zhuǎn)導(dǎo)通路在胚胎發(fā)生以及卵巢癌的發(fā)生和發(fā)展中發(fā)揮重要作用[50]。在卵巢中,HH信號(hào)轉(zhuǎn)導(dǎo)有助于致瘤過(guò)程。起源于卵巢表上皮的上皮性卵巢腫瘤不表達(dá)HH通路成分,而腫瘤性卵巢病變表達(dá)更高水平的基因,如SHH、DHH、PTCH1和GLI1,其中PTCH1和GLI1過(guò)表達(dá)與患者生存率低之間也存在相關(guān)性[50]。Kaye等[51]在HH信號(hào)傳導(dǎo)治療卵巢癌維持治療的臨床試驗(yàn)中發(fā)現(xiàn),Vismodegib(一種口服HH通路抑制劑)的無(wú)進(jìn)展生存期(progression-free survival,PFS)沒(méi)有顯示出具有臨床意義的改善,并且HH配體表達(dá)頻率低于預(yù)期。盡管如此,多項(xiàng)研究仍表明,靶向卵巢癌中的HH信號(hào)通路似乎是這種疾病患者的一種有前途的治療方法,并且HH信號(hào)通路與化療耐藥性相關(guān)。Song等[52]發(fā)現(xiàn),SMO、GLI1和PTCH在卵巢腫瘤中廣泛表達(dá)。此外,SMO和GLI1在順鉑耐藥卵巢癌細(xì)胞系A(chǔ)2780/DDP中的表達(dá)明顯高于天然A2780細(xì)胞。Steg等[53]認(rèn)為,拮抗劑能夠逆轉(zhuǎn)卵巢癌紫杉烷耐藥性。LDE-225是一種SMO抑制劑,通過(guò)下調(diào)多藥耐藥蛋白1(p-glycoprotein,MDR1)的表達(dá),增加化療耐藥卵巢癌細(xì)胞對(duì)紫杉醇的敏感性。B淋巴細(xì)胞瘤2(B-cell lymphoma 2,BCL2)[54]和叉頭盒蛋白M1(forkhead box protein M1,F(xiàn)OXM1)[55]是HH信號(hào)通路的靶基因,它們與卵巢癌順鉑耐藥顯著相關(guān),導(dǎo)致預(yù)后不良。Zhang等[56]進(jìn)一步研究發(fā)現(xiàn),靶向HH信號(hào)通路可增加卵巢癌對(duì)順鉑的敏感性。MDR1是HH信號(hào)通路的靶基因,該通路可能通過(guò)MDR1影響卵巢癌對(duì)順鉑的化療耐藥。此外,HH信號(hào)通路通過(guò)DNA損傷修復(fù)[57]、DNA甲基化[58]和上皮-間質(zhì)轉(zhuǎn)化[59]誘導(dǎo)耐藥。最近一項(xiàng)研究報(bào)道,含有E3泛素蛋白連接酶4的HECT和RLD結(jié)構(gòu)域(HECT and RLD domain containing E3 ubiquitin ligase 4,HERC4)過(guò)表達(dá)可以通過(guò)HH信號(hào)通路抑制卵巢癌細(xì)胞的生長(zhǎng),并在體內(nèi)抑制腫瘤的生長(zhǎng),這表明HERC4可以作為治療卵巢癌的潛在有效臨床靶點(diǎn)[60]。
4 小結(jié)與展望
從果蠅中首次發(fā)現(xiàn)HH蛋白以來(lái),HH信號(hào)通路在哺乳動(dòng)物中的作用機(jī)制備受關(guān)注,研究人員在這一領(lǐng)域發(fā)表了大量文章。目前已知,HH信號(hào)通路在哺乳動(dòng)物的生殖系統(tǒng)中,尤其是在卵巢組織中,發(fā)揮重要的調(diào)控作用。在生理和病理背景下,HH信號(hào)傳導(dǎo)無(wú)疑在細(xì)胞信號(hào)傳導(dǎo)中起著重要作用。在卵巢中,HH信號(hào)通路調(diào)節(jié)卵泡的發(fā)育和成熟、排卵以及類(lèi)固醇激素的生成。盡管已有相關(guān)研究,其具體分子機(jī)制仍不完全清楚。HH信號(hào)通路在不同性腺中的作用存在差異,雄性性腺功能僅受DHH信號(hào)的調(diào)控,而雌性性腺的卵泡發(fā)育和類(lèi)固醇生成同時(shí)受DHH和IHH信號(hào)的調(diào)控,需要進(jìn)一步研究區(qū)分DHH和IHH在卵泡發(fā)育和卵巢功能中的作用機(jī)制。眾所周知,雌激素在卵泡發(fā)育和動(dòng)物發(fā)情中扮演著至關(guān)重要的作用,且膽固醇作為雌激素合成的底物,可以促進(jìn)雌激素的合成。但是,IHH發(fā)揮作用需要膽固醇的修飾,目前有研究顯示,IHH可以抑制雌激素的合成,該過(guò)程膽固醇對(duì)雌激素的影響與膽固醇直接促進(jìn)雌激素合成相矛盾。那么,IHH在膽固醇合成雌激素過(guò)程中扮演怎樣的角色也是值得繼續(xù)探討的問(wèn)題。
HH信號(hào)通路的失調(diào)與卵巢疾病的發(fā)生和發(fā)展有關(guān),包括多囊卵巢綜合征、卵巢早衰和卵巢功能不全以及卵巢癌。當(dāng)前,針對(duì)HH信號(hào)通路的多種藥物已被開(kāi)發(fā)出來(lái),其中一些已被批準(zhǔn)用于癌癥的臨床治療,例如順鉑和白藜蘆已用于治療卵巢疾病。GLI1和SMO是HH信號(hào)通路的關(guān)鍵分子,它們被認(rèn)為是潛在的癌癥治療靶點(diǎn)[61-62]。因此,HH信號(hào)通路作為一個(gè)治療靶點(diǎn)具有重要的前景,闡明HH信號(hào)通路在卵巢疾病中的調(diào)控機(jī)制,可以為新的診斷、治療方法和藥物開(kāi)發(fā)提供理論依據(jù)。卵巢衰老是導(dǎo)致哺乳動(dòng)物與年齡相關(guān)的生殖能力下降和不孕癥的主要原因。在畜牧業(yè)中,卵巢衰老不僅降低了家畜卵母細(xì)胞的質(zhì)量和數(shù)量,還增加了與衰老相關(guān)的卵巢疾病發(fā)生率,從而縮短家畜的使用年限并降低了生產(chǎn)效益。目前,關(guān)于顆粒細(xì)胞和卵母細(xì)胞衰老的研究報(bào)道有限,且不夠深入。HH信號(hào)通路如何調(diào)控卵巢衰老?卵巢衰老又如何影響HH基因的表達(dá)?這些具體的分子機(jī)制仍需進(jìn)一步探索。解決這些問(wèn)題對(duì)于維持哺乳動(dòng)物卵巢的正常功能和延長(zhǎng)生殖壽命至關(guān)重要。
參考文獻(xiàn)(References):
[1] LI L Y,SHI X J,SHI Y,et al.The signaling pathways involved in ovarian follicle development[J].Front Physiol,2021,12:730196.
[2] YAO X L,EI-SAMAHY M A,XIAO S H,et al.CITED4 mediates proliferation,apoptosis and steroidogenesis of Hu sheep granulosa cells in vitro[J].Reproduction,2021,161(3):255-267.
[3] ZHANG Y X,BEACHY P A.Cellular and molecular mechanisms of Hedgehog signalling[J].Nat Rev Mol Cell Biol,2023,24(9): 668-687.
[4] DILOWER I,NILOY A J,KUMAR V,et al.Hedgehog signaling in gonadal development and function[J].Cells,2023,12(3):358.
[5] HUANG C C J,YAO H H C.Diverse functions of Hedgehog signaling in formation and physiology of steroidogenic organs[J].Mol Reprod Dev,2010,77(6):489-496.
[6] FINCO I,LAPENSEE C R,KRILL K T,et al.Hedgehog signaling and steroidogenesis[J].Annu Rev Physiol,2015,77:105-129.
[7] SARI I N,PHI L T H,JUN N,et al.Hedgehog signaling in cancer:a prospective therapeutic target for eradicating cancer stem cells[J].Cells,2018,7(11):208.
[8] SKODA A M,SIMOVIC D,KARIN V,et al.The role of the Hedgehog signaling pathway in cancer:a comprehensive review[J].Bosn J Basic Med Sci,2018,18(1):8-20.
[9] SIGAFOOS A N,PARADISE B D,F(xiàn)ERNANDEZ-ZAPICO M E.Hedgehog/GLI signaling pathway:transduction,regulation,and implications for disease[J].Cancers (Basel),2021,13(14):3410.
[10] JIA Y F,WANG Y S,XIE J W.The Hedgehog pathway:role in cell differentiation,polarity and proliferation[J].Arch Toxicol,2015,89(2):179-191.
[11] HUI C C,ANGERS S.Gli proteins in development and disease[J].Annu Rev Cell Dev Biol,2011,27:513-537.
[12] LIU C,RODRIGUEZ K F,BROWN P R,et al.Reproductive,physiological,and molecular outcomes in female mice deficient in Dhh and Ihh[J].Endocrinology,2018,159(7):2563-2575.
[13] MONKKONEN T,LEWIS M T.New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer[J].Biochim Biophys Acta Rev Cancer,2017,1868(1):315-332.
[14] FRANCO H L,YAO H H C.Sex and hedgehog:roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation[J].Chromosome Res,2012,20(1):247-258.
[15] MEHTA P,SINGH P,GUPTA N J,et al.Mutations in the desert hedgehog (DHH) gene in the disorders of sexual differentiation and male infertility[J].J Assist Reprod Genet,2021,38(7):1871-1878.
[16] JOHANSSON H K L,SVINGEN T.Hedgehog signal disruption,gonadal dysgenesis and reproductive disorders:is there a link to endocrine disrupting chemicals?[J].Curr Res Toxico,2020,1:116-123.
[17] BIAN Y H,HAHN H,UHMANN A.The hidden hedgehog of the pituitary:hedgehog signaling in development,adulthood and disease of the hypothalamic-pituitary axis[J].Front Endocrinol (Lausanne),2023,14:1219018.
[18] SEN A,HOFFMANN H M.Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis[J].Mol Cell Endocrinol,2020,501:110655.
[19] RICHARDS J S,REN Y A,CANDELARIA N,et al.Ovarian follicular theca cell recruitment,differentiation,and impact on fertility:2017 update[J].Endocr Rev,2018,39(1):1-20.
[20] LIU C,PENG J,MATZUK M M,et al.Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells[J].Nat Commun,2015,6:6934.
[21] REN Y,COWAN R G,MIGONE F F,et al.Overactivation of hedgehog signaling alters development of the ovarian vasculature in mice[J].Biol Reprod,2012,86(6):174.
[22] CHEN X,TUKACHINSKY H,HUANG C H,et al.Processing and turnover of the Hedgehog protein in the endoplasmic reticulum[J].J Cell Biol,2011,192(5):825-838.
[23] JIANG Y,ZHU D T,LIU W F,et al.Hedgehog pathway inhibition causes primary follicle atresia and decreases female germline stem cell proliferation capacity or stemness[J].Stem Cell Res Ther,2019,10(1):198.
[24] SINGH T,LEE E H,HARTMAN T R,et al.Opposing action of hedgehog and insulin signaling balances proliferation and autophagy to determine follicle stem cell lifespan[J].Dev Cell,2018,46(6):720-734.e6.
[25] WANG D C,HUANG J C,LO N W,et al.Sonic Hedgehog promotes in vitro oocyte maturation and term development of embryos in Taiwan native goats[J].Theriogenology,2017,103:52-58.
[26] LEE S,JIN J X,TAWEECHAIPAISANKUL A,et al.Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes[J].J Pineal Res,2017,63(3):e12424.
[27] LEE S,KANG H G,JEONG P S,et al.Effect of oocyte quality assessed by brilliant cresyl blue (BCB) staining on cumulus cell expansion and sonic hedgehog signaling in porcine during in vitro maturation[J].Int J Mol Sci,2020,21(12):4423.
[28] LIU Y,WEI Z Y,HUANG Y F,et al.Cyclopamine did not affect mouse oocyte maturation in vitro but decreased early embryonic development[J].Anim Sci J,2014,85(9):840-847.
[29] GUO Q,XUAN M F,LUO Z B,et al.Baicalin improves the in vitro developmental capacity of pig embryos by inhibiting apoptosis,regulating mitochondrial activity and activating sonic hedgehog signaling[J].Mol Hum Reprod,2019,25(9):538-549.
[30] JEONG P S,KANG H G,SONG B S,et al.Restoration of developmental competence in low-quality porcine cumulus-oocyte complexes through the supplementation of sonic hedgehog protein during in vitro maturation[J].Animals (Basel),2023,13(6): 1001.
[31] JOO Y E,JEONG P S,LEE S,et al.Anethole improves the developmental competence of porcine embryos by reducing oxidative stress via the sonic hedgehog signaling pathway[J].J Anim Sci Biotechnol,2023,14(1):32.
[32] GUO Q,LI S,WANG X,et al.Paeoniflorin improves the in vitro maturation of benzo(a)pyrene treated porcine oocytes via effects on the sonic hedgehog pathway[J].Theriogenology,2022,180:72-81.
[33] AAD P Y,ECHTERNKAMP S E,SYPHERD D D,et al.The hedgehog system in ovarian follicles of cattle selected for twin ovulations and births:evidence of a link between the IGF and hedgehog systems[J].Biol Reprod,2012,87(4):79.
[34] PARK Y,PARK Y B,LIM S W,et al.Time series ovarian transcriptome analyses of the porcine estrous cycle reveals gene expression changes during steroid metabolism and corpus luteum development[J].Animals (Basel),2022,12(3):376.
[35] TANG C,PAN Y B,LUO H,et al.Hedgehog signaling stimulates the conversion of cholesterol to steroids[J].Cell Signal, 2015,27(3):487-497.
[36] SIEBOLD C,ROHATGI R.The inseparable relationship between cholesterol and hedgehog signaling[J].Annu Rev Biochem,2023, 92: 273-298.
[37] JING J J,WU Z X,WANG J H,et al.Hedgehog signaling in tissue homeostasis,cancers,and targeted therapies[J].Sig Transduct Target Ther,2023,8(1):315.
[38] LI Y,XIONG G H,TAN J,et al.Aberrant activation of the Hedgehog signaling pathway in granulosa cells from patients with polycystic ovary syndrome[J].Bioengineered,2021,12(2):12123-12134.
[39] XU X H,ZHANG T R,MOKOU M,et al.Follistatin-like 1 as a novel adipomyokine related to insulin resistance and physical activity[J].J Clin Endocrinol Metab,2020,105(12):dgaa629.
[40] ZHOU X,WANG Y P,CHEN W Y,et al.Circulating HHIP levels in women with insulin resistance and PCOS:effects of physical activity,cold stimulation and anti-diabetic drug therapy[J].J Clin Med,2023,12(3):888.
[41] ZHANG J J,CHEN Q,DU D F,et al.Can ovarian aging be delayed by pharmacological strategies?[J].Aging (Albany NY),2019,11(2):817-832.
[42] VOLLENHOVEN B,HUNT S.Ovarian ageing and the impact on female fertility[J].F1000Research,2018,7:1835.
[43] ATA B,SEYHAN A,SELI E.Diminished ovarian reserve versus ovarian aging:overlaps and differences[J].Curr Opin Obstet Gynecol,2019,31(3):139-147.
[44] SHEIKHANSARI G,AGHEBATI-MALEKI L,NOURI M,et al.Current approaches for the treatment of premature ovarian failure with stem cell therapy[J].Biomed Pharmacother,2018,102:254-262.
[45] ESMAEILIAN Y,ATALAY A,ERDEMLI E.Putative germline and pluripotent stem cells in adult mouse ovary and their in vitro differentiation potential into oocyte-like and somatic cells[J].Zygote,2017,25(3):358-375.
[46] EBRAHIMI M,AKBARI ASBAGH F.The role of autoimmunity in premature ovarian failure[J].Iran J Reprod Med,2015, 13(8):461-472.
[47] JIANG Y,ZHANG Z Y,CHA L J,et al.Resveratrol plays a protective role against premature ovarian failure and prompts female germline stem cell survival[J].Int J Mol Sci,2019,20(14):3605.
[48] TEMPLEMAN N M,COTA V,KEYES W,et al.CREB non-autonomously controls reproductive aging through hedgehog/patched signaling[J].Dev Cell,2020,54(1):92-105.e5.
[49] SIEGEL R L,MILLER K D,WAGLE N S,et al.Cancer statistics,2023[J].CA Cancer J Clin,2023,73(1):17-48.
[50] LI H X,LI J H,F(xiàn)ENG L M.Hedgehog signaling pathway as a therapeutic target for ovarian cancer[J].Cancer Epidemiol,2016,40: 152-157.
[51] KAYE S B,F(xiàn)EHRENBACHER L,HOLLOWAY R,et al.A phase II,randomized,placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission[J].Clin Cancer Res,2012,18(23): 6509-6518.
[52] SONG X L,YAN L Y,LU C L,et al.Activation of hedgehog signaling and its association with cisplatin resistance in ovarian epithelial tumors[J].Oncol Lett,2018,15(4):5569-5576.
[53] STEG A D,KATRE A A,BEVIS K S,et al.Smoothened antagonists reverse taxane resistance in ovarian cancer[J].Mol Cancer Ther,2012,11(7):1587-1597.
[54] BEN-HAMO R,ZILBERBERG A,COHEN H,et al.Resistance to paclitaxel is associated with a variant of the gene BCL2 in multiple tumor types[J].npj Precis Oncol,2019,3:12.
[55] TASSI R A,TODESCHINI P,SIEGEL E R,et al.FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients[J].J Exp Clin Cancer Res,2017,36(1):63.
[56] ZHANG H,HU L Y,CHENG M Z,et al.The Hedgehog signaling pathway promotes chemotherapy resistance via multidrug resistance protein 1 in ovarian cancer[J].Oncol Rep,2020,44(6):2610-2620.
[57] MENG E H,HANNA A,SAMANT R S,et al.The impact of hedgehog signaling pathway on DNA repair mechanisms in human cancer[J].Cancers (Basel),2015,7(3):1333-1348.
[58] HUANG R L,GU F,KIRMA N B,et al.Comprehensive methylome analysis of ovarian tumors reveals hedgehog signaling pathway regulators as prognostic DNA methylation biomarkers[J].Epigenetics,2013,8(6):624-634.
[59] ZHANG K,SUN C P,ZHANG Q,et al.Sonic hedgehog-Gli1 signals promote epithelial-mesenchymal transition in ovarian cancer by mediating PI3K/AKT pathway[J].Med Oncol,2015,32(1):368.
[60] ZHU Q J,YANG X,LV Y C.HERC4 modulates ovarian cancer cell proliferation by regulating SMO-elicited hedgehog signaling[J].Biochim Biophys Acta Gen Sub,2024,1868(4):130557.
[61] THAZHACKAVAYAL BABY B,KULKARNI A M,GAYAM P K R,et al.Beyond cyclopamine:targeting Hedgehog signaling for cancer intervention[J].Arch Biochem Biophys,2024,754:109952.
[62] LIU Y B,HE L M,SUN M,et al.A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened[J].Cell Chem Biol,2024,31(7):1264-1276.e7.
(編輯 郭云雁)