














摘" 要: 目前對電力系統穩定性分析主要使用小信號分析方法,但當大信號擾動發生時,電力系統內在的非線性無法忽略,小信號分析方法的有效性值得商榷。在大信號擾動時,構造合理的暫態能量函數并確定系統臨界穩定對應的函數值(臨界能量),從而確定穩定域并非易事。為此,提出一種基于多項式表達的平方和方法來估計電力系統的穩定域。該方法將電力系統通過多項式近似的方式表達,利用平方和方法將李雅譜諾夫函數的構造問題轉化為線性矩陣不等式的可行解問題,通過數值計算得到構造的李雅譜諾夫函數,再通過優化計算得到穩定域的邊界。最后采用數值算例驗證了所提估計方法的可行性和有效性。
關鍵詞: 電力系統; 穩定域; 平方和方法; 多項式近似; 李雅譜諾夫函數; 線性矩陣不等式; 算例驗證
中圖分類號: TN911.1?34; TM712" " " " " " " " " 文獻標識碼: A" " " " " " " " " " 文章編號: 1004?373X(2025)04?0097?05
Power system ROA estimation based on SOS
ZHANG Weiwei, LI Zhaoming, SHI Hongtao, GAO Feng, ZHANG Bai
(School of Electrical and Information Engineering, North Minzu University, Yinchuan 750021, China)
Abstract: The existing research on stability analysis of power system mostly focuses on small?signal analysis methods. However, when large?signal disturbances occur, the intrinsic nonlinearity of the power system becomes inevitable, so that the small?signal analysis method may be no longer valid. How to construct a reasonable transient energy function and determine the function value (critical energy) corresponding to the critical stability of the system to determine the region?of?attraction (ROA) is not easy when large?signal disturbances occur. The sum of squares (SOS) method based on polynomial expression is proposed to estimate ROA of power system. In this method, the power system can be expressed by means of polynomial approximation. The construction problem of Lyapunov function is transformed into the feasible solution problem of linear matrix inequalities by means of SOS method. The constructed Lyapunov function is obtained by means of numerical calculation, and the boundary of ROA is obtained by means of the optimization calculation. The numerical examples verify the feasibility and effectiveness of the proposed method.
Keywords: power system; region?of?attraction; sum of squares method; polynomial approximation; Lyapunov function; linear matrix inequality; example verification
0" 引" 言
伴隨新能源的迅猛發展,高比例可再生能源經電力電子接口匯集并網,新能源的波動性與電力電子的混雜控制改變了電力系統的動態特性,經典穩定性定義和分析方法亟需擴展[1?2]。
目前針對電力系統穩定的研究主要借鑒經典的暫態穩定性分析方法,即等面積法和能量函數法[3?4]。但是,上述兩種方法均忽略了電力系統數學模型中存在的非線性項,導致穩定性判定結果既可能保守又可能冒進。同時,時域仿真法存在計算速度慢、不能給出穩定裕度的缺點。
李雅普諾夫直接法在定量分析非線性系統的大范圍穩定性方面具有優勢,通過構造暫態能量函數,從系統能量的角度出發,可以在不計算整個系統運動軌跡的前提下進行穩定分析和判斷,得到了長足的發展[5?9]。……