999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有高K背柵的無(wú)電壓回跳RC?IGBT靜態(tài)特性研究

2025-02-28 00:00:00王楠徐勇根胡夏融
現(xiàn)代電子技術(shù) 2025年4期

摘" 要: 針對(duì)傳統(tǒng)RC?IGBT導(dǎo)通壓降大、擊穿電壓低等問(wèn)題,提出一種具有高介電常數(shù)(高K)背柵的RC?IGBT器件結(jié)構(gòu),其特點(diǎn)是位于底部集電極的背柵介質(zhì)采用高介電常數(shù)材料。高K介質(zhì)增大了正向?qū)〞r(shí)背柵周圍的空穴濃度,不僅消除了電壓回跳,還降低了導(dǎo)通壓降。仿真結(jié)果表明:在高正向?qū)娏髅芏认拢↖CE=925 A/cm2),高K背柵RC?IGBT的導(dǎo)通壓降為1.71 V,相比傳統(tǒng)RC?IGBT降低了19.34%,相比氧化層背柵RC?IGBT降低了13.20%;另一方面,在阻斷狀態(tài)下,高K介質(zhì)增強(qiáng)了背柵周圍的電子積累,增大了擊穿電壓。高K背柵RC?IGBT的擊穿電壓為1 312 V,相較于氧化層背柵RC?IGBT提高了44.18%。此外,高K背柵RC?IGBT的反向?qū)▔航迪啾葌鹘y(tǒng)RC?IGBT降低了43.43%,相比氧化層背柵RC?IGBT降低了13.85%。將所提出的高K背柵的RC?IGBT應(yīng)用于高壓、大功率的電子電力系統(tǒng),可提高系統(tǒng)的可靠性并降低損耗。

關(guān)鍵詞: RC?IGBT; 電壓回跳; 高介電常數(shù); 背柵; 導(dǎo)通壓降; 阻斷特性

中圖分類號(hào): TN322.8?34" " " " " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼: A" " " " " " " " " " " 文章編號(hào): 1004?373X(2025)04?0034?06

Research on static characteristics of snapback?free RC?IGBT with high K back gate

WANG Nan, XU Yonggen, HU Xiarong

(School of Science, Xihua University, Chengdu 610039, China)

Abstract: In allusion to the problem of high on?state voltage drop (Von) and the low breakdown voltage, a high permittivity (high K) back gate reverse conducting insulated gate bipolar transistor (HK?BG?RC?IGBT) device structure is proposed. Its characteristic is that the back gate dielectric located at the bottom collector is filled with HK. The HK dielectric increases the hole concentration around the back gate during the forward conduction, which not only eliminates the snapback?free, but also reduces Von. The simulation results show that, at high forward conduction current density (ICE=925 A/cm2), the Von of HK?BG?RC?IGBT is 1.71 V, which is 19.34% lower than that of the conventional RC?IGBT (C?RC?IGBT) and 13.20% lower than that of OXIde back gate RC?IGBT (OXI?BG?RC?IGBT). The HK dielectric enhances the electron accumulation around the BG in the blocking state, resulting in an increased breakdown voltage. The simulation results show that the breakdown voltage of the HK?BG?RC?IGBT is 1 312 V, which is increased by 44.18% compared with OXI?BG?RC?IGBT. In addition, the reverse Von of the HK?BG?RC?IGBT is reduced respectively by 13.85% and 43.43% compared with OXI?BG?RC?IGBT and C?RC?IGBT. Applying the proposed HK?BG?RC?IGBT to high?voltage and high?power electronic power systems can enhance the system reliability and reduce the loss.

Keywords:" RC?IGBT; snapback?free; high permittivity (high K); back gate; on?state voltage drop; blocking state

0" 引" 言

絕緣柵雙極型晶體管(IGBT)因兼有場(chǎng)效應(yīng)晶體管易驅(qū)動(dòng)和雙極型三極管導(dǎo)通壓降低、電流密度大的優(yōu)點(diǎn), 被廣泛應(yīng)用于高壓功率器件[1?3]。從誕生以來(lái),IGBT經(jīng)歷了穿通型、非穿通型和場(chǎng)截止型的發(fā)展歷程,這三種結(jié)構(gòu)都是針對(duì)導(dǎo)通特性和關(guān)斷特性提出的。但由于IGBT是由MOSFET和BJT組合而成,在器件內(nèi)部未并聯(lián)續(xù)流二極管,因此沒(méi)有反向?qū)芰4?5]。

為了使IGBT具有反向?qū)芰Γ?jié)省芯片面積并降低成本和功耗,器件研究者將IGBT與續(xù)流二極管反向并聯(lián)集成在一起,稱為逆導(dǎo)型IGBT(Reverse Conducting IGBT, RC?IGBT)[6?8]。RC?IGBT將IGBT集電極部分區(qū)域替換為N+短路區(qū),雖然實(shí)現(xiàn)了逆向?qū)ǎ档土思纳娮瑁谡驅(qū)〞r(shí),器件由單極型導(dǎo)通切換到雙極型導(dǎo)通模式,造成了電壓回跳[9?11],不僅增大了器件的導(dǎo)通損耗,也不利于串并聯(lián)應(yīng)用。因此,抑制電壓回跳在RC?IGBT中尤為重要[12]。

近年來(lái),器件研究者提出了許多新的結(jié)構(gòu),包括浮動(dòng)P層RC?IGBT、交替N+/P緩沖區(qū)RC?IGBT、SJ RC?IGBT以及背柵RC?IGBT等[13?15]。其中,背柵RC?IGBT通過(guò)底部集電極處MIS(金屬?絕緣體?半導(dǎo)體)結(jié)構(gòu)增強(qiáng)了電子濃度和空穴濃度,不僅消除了電壓回跳,也更好地優(yōu)化了器件的導(dǎo)通和阻斷特性,因此受到了廣泛關(guān)注[16?19]。高介電常數(shù)材料因其可增強(qiáng)漂移區(qū)的輔助耗盡并降低介質(zhì)層最大電場(chǎng),在硅基和碳化硅基功率器件中得到了廣泛應(yīng)用[20?22]。

本文提出一種具有高介電常數(shù)(高K)背柵的RC?IGBT結(jié)構(gòu),首次將高K介質(zhì)應(yīng)用在功率器件的背柵,進(jìn)一步增強(qiáng)了正向?qū)〞r(shí)集電極處的空穴積累和阻斷時(shí)的電子濃度,相對(duì)于氧化層介質(zhì),降低了導(dǎo)通壓降,提升了擊穿電壓。本文重點(diǎn)研究了高K介質(zhì)背柵的介電常數(shù)、背柵高度以及背柵電壓對(duì)RC?IGBT的正向?qū)ā⒄蜃钄嘁约胺聪驅(qū)ㄌ匦缘挠绊懀捎肧ilvaco仿真軟件對(duì)器件特性進(jìn)行了分析和討論,所得結(jié)論對(duì)器件研究具有一定的參考意義。

1" 結(jié)構(gòu)和原理

圖1是本文所提出的具有高K背柵的RC?IGBT結(jié)構(gòu)。該結(jié)構(gòu)有兩個(gè)柵極,頂部柵極用來(lái)控制器件的導(dǎo)通和關(guān)斷;底部柵極(背柵)設(shè)置在集電極附近,并施加一個(gè)與集電極不同的偏置電壓(二者電壓差為VBC),通過(guò)改變VBC的大小來(lái)控制載流子在背柵周圍的積累。由于底部柵介質(zhì)采用高介電常數(shù)材料,增強(qiáng)了空穴和電子在背柵周圍的積累效應(yīng),從而消除了電壓回跳并優(yōu)化了器件的導(dǎo)通與阻斷特性。

圖2給出了正向?qū)〞r(shí),傳統(tǒng)RC?IGBT(C?RC?IGBT)、氧化層背柵RC?IGBT(OXI?BG?RC?IGBT)以及高K背柵RC?IGBT(HK?BG?RC?IGBT)的空穴濃度分布圖,其中k表示背柵介質(zhì)的相對(duì)介電常數(shù)。當(dāng)VBClt;0時(shí),背柵周圍形成高密度的空穴反型層,構(gòu)成電子勢(shì)壘,提高了集電極電阻,消除了電壓回跳[20]。此外,由于高K介質(zhì)增強(qiáng)了背柵周圍空穴的積累效應(yīng),使得HK?BG?RC?IGBT的空穴濃度大于OXI?BG?RC?IGBT,這不僅進(jìn)一步消除了電壓回跳,也增大了正向?qū)娏鳌?/p>

圖3給出了正向阻斷時(shí),C?RC?IGBT、OXI?BG?RC?IGBT以及HK?BG?RC?IGBT的電子濃度分布圖。當(dāng)VBCgt;0時(shí),背柵周圍形成電子積累層,終止了阻斷時(shí)耗盡層的繼續(xù)擴(kuò)展,此處形成的電場(chǎng)尖峰提高了耗盡層的平均電場(chǎng),增大了擊穿電壓。

通過(guò)圖3的二維濃度分布發(fā)現(xiàn),由于高K介質(zhì)增強(qiáng)了背柵周圍電子的積累,使得HK?BG?RC?IGBT的電子濃度大于OXI?BG?RC?IGBT,從而在等效緩沖層邊界處具備更大的電場(chǎng)尖峰,提高了器件的阻斷電壓。

圖4給出了反向?qū)〞r(shí),C?RC?IGBT、OXI?BG?RC?IGBT以及HK?BG?RC?IGBT的電子濃度分布圖。反向?qū)〞r(shí),VECgt;0,VG=0,此時(shí)VBCgt;0,背柵周圍積累大量電子,降低了PIN二極管的勢(shì)壘高度,提高了反向?qū)〞r(shí)載流子的注入效率,從而提高了反向?qū)娏鳌Mㄟ^(guò)圖4的二維濃度分布發(fā)現(xiàn),由于高K介質(zhì)增強(qiáng)了背柵周圍電子的積累效應(yīng),使得HK?BG?RC?IGBT的電子濃度大于OXI?BG?RC?IGBT,進(jìn)一步降低了反向?qū)▔航担苍龃罅朔聪驅(qū)娏鳌?/p>

2" 結(jié)果與討論

本文為了研究背柵對(duì)RC?IGBT的正向?qū)ā⒄蜃钄嘁约胺聪驅(qū)ㄌ匦缘挠绊懀o出了RC?IGBT器件的關(guān)鍵仿真參數(shù),如表1所示。

2.1" 正向?qū)ㄌ匦?/p>

圖5給出了C?RC?IGBT、OXI?BG?RC?IGBT以及HK?BG?RC?IGBT的正向?qū)ㄌ匦詫?duì)比圖。由于C?RC?IGBT開(kāi)始在MOS工作模式,在向IGBT工作模式的轉(zhuǎn)換過(guò)程中會(huì)產(chǎn)生電壓回跳現(xiàn)象,從圖中可以看出回跳電壓ΔVSB≈0.73 V。

對(duì)于HK?BG?RC?IGBT,正向?qū)〞r(shí),背柵周圍形成空穴反型層,構(gòu)成電子勢(shì)壘,提高了集電極電阻,消除了電壓回跳。此外,高K介質(zhì)增強(qiáng)了空穴在背柵周圍的積累,從而增大了漂移區(qū)中的載流子濃度,使得正向?qū)娏魈岣撸瑢?dǎo)通壓降降低。從圖5可看出,在電流密度為925 A/cm2時(shí),HK?BG?RC?IGBT的正向?qū)▔航禐?.71 V,相對(duì)于傳統(tǒng)RC?IGBT降低了19.34%,而相對(duì)于OXI?BG?RC?IGBT降低了13.20%。

2.2" 正向阻斷特性

圖6a)給出了OXI?BG?RC?IGBT和HK?BG?RC?IGBT阻斷時(shí)的縱向電場(chǎng)分布圖。當(dāng)器件正向阻斷時(shí),VBCgt;0,背柵周圍會(huì)形成一個(gè)電子積累層,如圖6a)所示,該積累層作為等效的N型緩沖層,在其邊界處產(chǎn)生了一個(gè)新的電場(chǎng)尖峰,提高了擊穿電壓。當(dāng)k從3.9增大到78時(shí),在背柵邊緣(y=100 μm),電場(chǎng)從5.32 V/μm提高到9.9 V/μm。由于平均電場(chǎng)提高,擊穿電壓增大,由圖6b)可見(jiàn),HK?BG?RC?IGBT(k=78)的擊穿電壓為1 312 V,相對(duì)于OXI?BG?RC?IGBT(k=3.9)的擊穿電壓(910 V)提高了402 V,即44.18%。雖然C?RC?IGBT通過(guò)增加N型緩沖層可以使擊穿電壓提高到1 333 V,但是由于正向?qū)ù嬖陔妷夯靥F(xiàn)象,限制了其應(yīng)用。

2.3" 反向?qū)ㄌ匦?/p>

圖7給出了C?RC?IGBT、OXI?BG?RC?IGBT和HK?BG?RC?IGBT的反向?qū)↖?V特性圖。從圖中可見(jiàn),當(dāng)VBC=2 V時(shí),電流密度為-756 A/cm2,HK?BG?RC?IGBT的反向?qū)▔航禐?.12 V,相對(duì)于OXI?BG?RC?IGBT降低了13.85%,相對(duì)于C?RC?IGBT降低了43.43%。這是因?yàn)楦逰介質(zhì)增強(qiáng)了背柵周圍的電子積累,從而提高了反向?qū)娏鳎档土朔聪驅(qū)▔航怠?/p>

圖8研究了背柵高度H對(duì)正向?qū)ê驼蜃钄嗵匦缘挠绊憽T谡驅(qū)〞r(shí),隨著H增大,背柵周圍載流子濃度增大,提高了正向?qū)娏鳎档土苏驅(qū)▔航怠V档米⒁獾氖牵?dāng)Hlt;6 μm時(shí),背柵周圍尚未形成足夠的空穴反型,故仍然存在電壓回跳現(xiàn)象。在正向阻斷時(shí),擊穿電壓隨著H的增大而先增大后降低。當(dāng)H較小時(shí),背柵周圍不能積累足夠的電子;當(dāng)H較大時(shí),隨著H的增大,有效漂移區(qū)長(zhǎng)度減小,擊穿電壓緩慢降低。為了兼顧正向壓降和阻斷電壓,背柵高度取H=8 μm作為最優(yōu)值。

圖9給出了偏置電壓VBC對(duì)器件正向?qū)ê妥钄嗵匦缘挠绊憽1硸胖車目昭舛入S著[VBC]的增加而增大,正向電流增大,導(dǎo)通壓降降低。由圖9還可知:在正向阻斷時(shí),較小的VBC不能在背柵周圍積累足夠的電子,沒(méi)有形成等效N型緩沖層,導(dǎo)致?lián)舸╇妷航档停划?dāng)VBC較大時(shí),等效緩沖層形成,擊穿電壓受到VBC的影響較小。

3" 結(jié)" 論

本文提出了一種具有高介電常數(shù)背柵的RC?IGBT器件結(jié)構(gòu),高K介質(zhì)增強(qiáng)了背柵周圍電子和空穴的積累,降低了器件的正向?qū)▔航担岣吡藫舸╇妷骸7抡娼Y(jié)果表明,高K背柵RC?IGBT的導(dǎo)通壓降相對(duì)于傳統(tǒng)RC?IGBT降低了19.34%,相對(duì)于氧化層背柵RC?IGBT降低了13.20%。高K背柵RC?IGBT的擊穿電壓相較于氧化層背柵RC?IGBT提高了44.18%。此外,高K背柵RC?IGBT的反向?qū)▔航迪鄬?duì)于傳統(tǒng)RC?IGBT降低了43.43%,相對(duì)于氧化層背柵RC?IGBT降低了13.85%。

注:本文通訊作者為胡夏融。

參考文獻(xiàn)

[1] CHEN W, CHENG J, HUANG H, et al. The oppositely doped islands IGBT achieving ultralow turn off loss [J]. IEEE transactions on electron devices, 2019, 66(8): 3690?3693.

[2] 杜繼光,丁馨楠,王偉正.基于數(shù)字控制的IGBT短路保護(hù)策略的應(yīng)用[J].電子技術(shù),2023,52(4):40?41.

[3] DENG X, CHENG Z, CHEN Z, et al. A hybrid?channel injection enhanced modulation 4H?SiC IGBT transistors with improved performance [J]. IEEE transactions on electron devices, 2022, 69(8): 4421?4426.

[4] ZHANG Z, HE H, LI K, et al. Physical transient model of IGBT in forward conduction mode [J]. IEEE transactions on electron devices, 2022, 69(7): 3841?3847.

[5] MATSUSHIMA H, OKINO H, WATANABE N, et al. Mecha?nism of maximum?current limitation for 10 kV SIC?IGBT module by analyzing surge current test result [J]. IEEE transactions on electron devices, 2023(2): 11?21.

[6] WU W, LI Y, YU M, et al. Low switching loss built?in diode of high?voltage RC?IGBT with shortened P+ emitter [J]. Micromachines, 2023, 14(4): 873.

[7] 曾偉,武華,馮秀平,等.一種低反向恢復(fù)電流的無(wú)電壓回跳RC?IGBT設(shè)計(jì)[J].電子器件,2023,46(6):1480?1483.

[8] 吳毅,夏云,劉超,等.一種新型無(wú)電壓折回現(xiàn)象的超結(jié)逆導(dǎo)型IGBT[J].電子與封裝,2022,22(9):68?72.

[9] DENG G, LUO X, ZHOU K, et al. A snapback?free RC?IGBT with alternating N/P buffers [C]// 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). [S.l.]: IEEE, 2017: 127?130.

[10] DENG G, LUO X R, WEI J, et al. A snapback?free reverse conducting insulated?gate bipolar transistor with discontinuous field?stop layer [J]. IEEE transactions on electron devices, 2018, 65(5): 1856?1861.

[11] ZHANG X D, WANG Y, WU X, et al. An improved V CE?E OFF tradeoff and snapback?free RC?IGBT with P? pillars [J]. IEEE transactions on electron devices, 2020, 67(7): 2859?2864.

[12] REIGOSA P D, RAHIMO M, MINAMISAWA R, et al. Switching stability analysis of paralleled RC?IGBTs with snapback effect [J]. IEEE transactions on electron devices, 2021, 68(7): 3429?3434.

[13] LIU Z, SHENG K. A novel self?controlled double trench gate snapback free reverse?conducting IGBT with a built?in trench barrier diode [J]. IEEE transactions on electron devices, 2020, 67(4): 1705?1711.

[14] FINDLAY E M, UDREA F. Reverse?conducting insulated gate bipolar transistor: A review of current technologies [J]. IEEE transactions on electron devices, 2018, 66(1): 219?231.

[15] CHEN Q, ZHAO X. Explore the effect of different parameters on eliminating the snapback of RC?IGBT with P?poly trench?collectors [C]// 2023 6th International Conference on Electrical Engineering and Green Energy (CEEGE). [S.l.]: IEEE, 2023: 46?50.

[16] WU Z, HE Y, LIU D, et al. Novel backside structure for reverse conducting insulated?gate bipolar transistor with two different collector trench [J]. IEEE transactions on electron devices, 2022, 69(8): 4414?4420.

[17] WANG Z, YANG C, HUANG X. A novel concept of electron?hole enhancement for super?junction reverse?conducting insulated gate bipolar transistor with electron?blocking layer [J]. Micromachines, 2023, 14(3): 646.

[18] XU X, CHEN Z. Simulation study of a novel full turn?on RC?IGBT with ultralow energy loss [J]. IEEE electron device letters, 2019, 40(5): 757?760.

[19] HUANG M, LI J, XIE C, et al. Snapback‐free reverse conducting IGBT with p‐poly trench‐collectors [J]. Electronics letters, 2020, 56(3): 153?155.

[20] 王驍瑋,羅小蓉,尹超,等.高K介質(zhì)電導(dǎo)增強(qiáng)SOI LDMOS機(jī)理與優(yōu)化設(shè)計(jì)[J].物理學(xué)報(bào),2013,62(23):317?323.

[21] ZHANG Z, YAO J, GUO Y, et al. Numerical study of the VDMOS with an integrated high?k gate dielectric and high?k dielectric trench [C]// 2021 China Semiconductor Technology International Conference (CSTIC). [S.l.]: IEEE, 2021: 1?3.

[22] 陳為真,程駿驥.一種具有部分高介電常數(shù)介質(zhì)調(diào)制效應(yīng)IGBT[J].微電子學(xué),2021,51(2):246?250.

作者簡(jiǎn)介:王" 楠(1999—),女,天津人,在讀碩士研究生,研究方向?yàn)楣杌疤蓟杌邏篗OSFET、IGBT功率器件設(shè)計(jì)。

徐勇根(1983—),男,四川成都人,博士研究生,教授,研究方向?yàn)榧す鈧鬏斉c激光雷達(dá)。

胡夏融(1984—),男,四川成都人,博士研究生,講師,研究方向?yàn)楣β拾雽?dǎo)體器件及集成電路設(shè)計(jì)。

主站蜘蛛池模板: 欧洲高清无码在线| 久久精品无码一区二区国产区| 不卡视频国产| 国产精品主播| 国产麻豆永久视频| 人妻21p大胆| 欧美成人一级| 91午夜福利在线观看| 韩国v欧美v亚洲v日本v| 青青青草国产| 欧美五月婷婷| 色天天综合久久久久综合片| 国产一级毛片yw| 伊人成人在线视频| 一级毛片中文字幕| 国产三级国产精品国产普男人| 国产jizz| 999在线免费视频| 亚洲男人在线天堂| 国产精品香蕉在线观看不卡| 国产精品护士| swag国产精品| 91久久青青草原精品国产| 亚洲愉拍一区二区精品| 国产成人调教在线视频| 亚洲第一天堂无码专区| 老司机精品久久| 亚洲欧美日本国产综合在线| AV熟女乱| 成人日韩欧美| 国产精品美女网站| 亚洲中文字幕在线一区播放| 亚洲国产精品人久久电影| yy6080理论大片一级久久| 亚洲精品少妇熟女| 亚洲女同一区二区| 成人无码一区二区三区视频在线观看 | 亚洲AV无码一区二区三区牲色| 国产在线观看精品| 亚洲 欧美 偷自乱 图片| 热99re99首页精品亚洲五月天| 国产成人亚洲精品色欲AV| 99无码熟妇丰满人妻啪啪| 日韩高清中文字幕| 91在线免费公开视频| 怡春院欧美一区二区三区免费| 日韩一级毛一欧美一国产| 免费人欧美成又黄又爽的视频| 无码日韩精品91超碰| 日韩国产综合精选| 国产丰满成熟女性性满足视频 | 国产精彩视频在线观看| 亚洲激情99| 黄色一及毛片| A级全黄试看30分钟小视频| 高清不卡一区二区三区香蕉| 成人精品在线观看| 精品91自产拍在线| 国产91蝌蚪窝| 亚洲丝袜第一页| 国产第八页| 人妻无码中文字幕一区二区三区| 久久精品无码中文字幕| 456亚洲人成高清在线| 精品成人一区二区| 久操中文在线| 亚洲欧美日本国产专区一区| 亚洲区一区| 国产剧情国内精品原创| 成人福利在线免费观看| 久久成人18免费| 国产理论一区| 在线视频亚洲欧美| 国产精品九九视频| 囯产av无码片毛片一级| 国产91九色在线播放| 69综合网| 草逼视频国产| 亚洲一区二区三区在线视频| 99在线观看国产| 无码国产伊人| 国产精品手机在线观看你懂的|