









摘 要 金蕎麥具有較高的醫(yī)療保健價(jià)值,目前缺乏相應(yīng)的分子工具用于系統(tǒng)評(píng)價(jià)金蕎麥資源以保護(hù)及利用種質(zhì)資源,SSR標(biāo)記能夠應(yīng)用于植物多樣性評(píng)價(jià)、品種鑒定以及遺傳圖譜構(gòu)建等領(lǐng)域。為揭示金蕎麥根系轉(zhuǎn)錄組SSR分布特征,開發(fā)更多有價(jià)值的SSR標(biāo)記,本研究利用Krait軟件對(duì)其46 923個(gè)Uingenes序列的SSR位點(diǎn)進(jìn)行檢索和標(biāo)記開發(fā)。結(jié)果顯示,在1 783個(gè)Unigenes序列中包含1 961個(gè)SSR位點(diǎn),SSR分布頻率為3.80%,平均分布間距為1/17.00 kb;其中三核苷酸重復(fù)基序數(shù)量最多(54.92%),其次是單核苷酸重復(fù)基序(23.36%)和二核苷酸重復(fù)基序(10.76%);共發(fā)現(xiàn)104種重復(fù)基序,其中A/T的出現(xiàn)頻率最高 "(23.10%),其次是AAG/CTT(16.32%)和AG/CT(5.61%)。隨機(jī)合成了115對(duì)SSR引物,基于12份金蕎麥種質(zhì)資源檢測(cè)其多態(tài)性,結(jié)果得出98對(duì)引物(85.2%)能擴(kuò)增出目標(biāo)條帶,其中36對(duì)引物有多態(tài)性。單個(gè)SSR引物平均能檢測(cè)到3.83個(gè)變異位點(diǎn),多態(tài)信息含量(PIC)為0.15~0.96,平均為0.53;12個(gè)金蕎麥之間的遺傳相似系數(shù)為0.47~0.76,平均值為0.55,表明12個(gè)金蕎麥種質(zhì)具有一定的遺傳多樣性。本研究鑒定金蕎麥根系轉(zhuǎn)錄組SSR標(biāo)記,有效增加了金蕎麥遺傳多樣性評(píng)價(jià)、品種鑒定和重要性狀遺傳機(jī)制的解析等研究中可用的分子標(biāo)記,為金蕎麥分子育種的深入研究奠定了基礎(chǔ)。
關(guān)鍵詞 金蕎麥種質(zhì);轉(zhuǎn)錄組;SSR分子標(biāo)記;聚類分析
金蕎麥(Fagopyrum cymosum)為蓼科(Polygonaceae)蕎麥屬(Fagopyrum)多年生半灌木植物,又有苦蕎頭、野蕎麥及紅三七等別稱,是多年生野生大粒型蕎麥的總稱[1]。金蕎麥原產(chǎn)于中國(guó)西南地區(qū),現(xiàn)廣泛分布于尼泊爾、不丹、印度以及中國(guó)西藏、云南、貴州等地[2]。金蕎麥富含多酚類、甾體、萜類、有機(jī)酸類、黃酮類等物質(zhì),常以干燥的根莖入藥,因其有較強(qiáng)的抗菌活性以及增強(qiáng)機(jī)體免疫能力等功能而被載入《中華人民共和國(guó)藥典》和《中國(guó)獸藥典》[3-5]。近年來,金蕎麥人工栽培種產(chǎn)量和品質(zhì)難以滿足日漸增加的市場(chǎng)要求,而野生資源因過度采伐瀕臨滅絕,已被列為了國(guó)家二級(jí)保護(hù)植物。目前,由于缺乏系統(tǒng)的金蕎麥資源評(píng)價(jià)體系,極大地限制了對(duì)金蕎麥種質(zhì)資源的保護(hù)及有效利用。因此,金蕎麥種質(zhì)資源的鑒定不但對(duì)野生金蕎麥資源的保護(hù)具有重要作用,也有利于金蕎麥資源的開發(fā)利用。
目前,SSR標(biāo)記已廣泛應(yīng)用于植物多樣性評(píng)價(jià)[6-7]、品種鑒定[8]以及遺傳圖譜構(gòu)建[9]等領(lǐng)域。蕎麥屬的三大栽培種中普通蕎麥和苦蕎基因組及轉(zhuǎn)錄組SSR分子標(biāo)記已大規(guī)模開發(fā),并已廣泛應(yīng)用于蕎麥屬植物種質(zhì)資源遺傳多樣性評(píng)價(jià)[10-13]、群體結(jié)構(gòu)分析[14]和重要農(nóng)藝性狀的關(guān)聯(lián)分析[15-16]等研究中。金蕎麥?zhǔn)强嗍w的野生近緣種,其基因組大小(1.08 Gb)是苦蕎(0.48 Gb)的兩倍多,遺傳信息更為豐富[17]。然而金蕎麥SSR標(biāo)記的研究及應(yīng)用還相對(duì)匱乏,目前僅趙莎等[18]利用5對(duì)金蕎麥基因組SSR分子標(biāo)記對(duì)來自云南、貴州、四川的野生金蕎麥樣本進(jìn)行遺傳多樣性分析及聚類分析。任奎[19]利用甜蕎10對(duì)SSR引物對(duì)497份金蕎麥種質(zhì)資源進(jìn)行了遺傳多樣性分析,進(jìn)一步驗(yàn)證了西南地區(qū)是野生蕎麥的多樣性中心。近年來,金蕎麥的轉(zhuǎn)錄組[20-21]和基因組[17]序列相繼釋放,為大規(guī)模開發(fā)金蕎麥SSR標(biāo)記奠定了基礎(chǔ)。
本研究分析了金蕎麥根系轉(zhuǎn)錄組Uingenes序列SSR的信息和分布特征,利用12份金蕎麥種質(zhì)篩選多態(tài)性SSR引物,并進(jìn)行遺傳多樣性分析,研究結(jié)果將為金蕎麥親緣關(guān)系鑒定、種質(zhì)資源評(píng)價(jià)以及遺傳圖譜構(gòu)建等研究提供多態(tài)性豐富的SSR標(biāo)記。
1 材料與方法
1.1 試驗(yàn)材料及DNA提取
隨機(jī)選取12份金蕎麥種質(zhì)作為轉(zhuǎn)錄組SSR引物多態(tài)性研究的材料(表1)。材料常年種植于貴州師范大學(xué)蕎麥產(chǎn)業(yè)技術(shù)研究中心安順研究基地(106°12′E,26°9′N)金蕎麥種質(zhì)圃,于2022年3月采取其幼嫩葉片,采用CTAB法提取基因組DNA[22],使用B-500超微量分光光度計(jì)(中國(guó)上海元析儀器)測(cè)定DNA濃度和純度。將檢測(cè)合格的DNA樣品稀釋至100 ng·μL-1置于 "-20 ℃冰箱保存,備用。
1.2 轉(zhuǎn)錄組SSR位點(diǎn)搜索及引物合成
利用貴州師范大學(xué)生命科學(xué)學(xué)院貴州省蕎麥工程技術(shù)研究中心前期基于高通量測(cè)序獲得的金蕎麥根系轉(zhuǎn)錄組的Unigenes序列[20],采用Krait軟件搜索其SSR位點(diǎn)并設(shè)計(jì)引物。SSR位點(diǎn)搜索參數(shù)設(shè)置為:?jiǎn)沃亮塑账嶂貜?fù)的最小重復(fù)次數(shù)分別為12、7、5、4、4和4次。SSR引物設(shè)計(jì)參數(shù)為:引物長(zhǎng)度18~20 bp,目標(biāo)產(chǎn)物大小100~300 bp,GC含量30%~80%,退火溫度58" ℃~60 ℃。
1.3 SSR引物的擴(kuò)增和電泳
PCR反應(yīng)體系為:DNA模板1 μL(100" "ng·μL-1),上下游引物各1 μL(10" "μmol·L-1),Green Taq Mix(中國(guó)南京諾唯贊),6 μL,補(bǔ)雙蒸水至12 μL,再加入10 μL石蠟油。PCR反應(yīng)程序?yàn)椋?4 ℃預(yù)變性5 min;94 ℃變性40 s;最適退火溫度(Tm),退火30 s;72 ℃復(fù)性" "45 s,32個(gè)循環(huán);72 ℃延伸10 min;4 ℃保存。PCR產(chǎn)物加入6 μL的6×上樣緩沖液,利用DYCZ-30C雙板夾芯式垂直電泳儀(北京六一儀器廠)進(jìn)行8%變性聚丙烯酰胺凝膠電泳,銀染顯影后,拍照記錄帶型。
1.4 數(shù)據(jù)處理
2 結(jié)果與分析
2.1 金蕎麥根系轉(zhuǎn)錄組SSR位點(diǎn)信息
在金蕎麥轉(zhuǎn)錄組的46 923個(gè)Unigenes序列中共搜索到1 961個(gè)SSR位點(diǎn),分布在1 783條Unigenes上,發(fā)生頻率(含有SSR的Unigene個(gè)數(shù)/Unigene總數(shù))為3.80%。其中,含2個(gè)及以上SSR位點(diǎn)的Unigene序列有178條,其余 "1 626條序列均含1個(gè)SSR位點(diǎn);SSR出現(xiàn)頻率(SSR個(gè)數(shù)/Unigene總數(shù))為4.18%,SSR平均分布間距1/17.00 kb(表 2)。
2.2 金蕎麥根系轉(zhuǎn)錄組SSR分布特征
金蕎麥轉(zhuǎn)錄組SSR類型主要集中于單至三核苷酸重復(fù),共占SSR總數(shù)的89.04%,其中單核苷酸占23.36%,二核苷酸占10.76%,三核苷酸重復(fù)數(shù)目最多占54.92%;四核苷酸、五核苷酸和六核苷酸SSR分布較少,分別占比5.86%、 "2.29%、2.80%。共有104種重復(fù)基元類型,單至六核苷酸重復(fù)分別有2、4、9、21、23和45種(表 2)。從重復(fù)基元分布比例來看,單核苷酸重復(fù)基元 "A/T占SSR位點(diǎn)總數(shù)比例最高,為23.10%,其次是三核苷酸重復(fù)基元AAG/CTT,分別為16.32%;二核苷酸重復(fù)基元以AG/CT占比最高,為 "5.61%(圖 1)。
金蕎麥轉(zhuǎn)錄組SSR基序長(zhǎng)度平均為16.25 bp,單至六核苷酸SSR基序的平均序列長(zhǎng)度分別為14.36、16.19、16.33、17.18、20.67及24.98 bp(表 2)。SSR重復(fù)長(zhǎng)度以15~19 bp最多,占比為67.87%,25~29最少,占比為0.15%;SSR重復(fù)次數(shù)以5次最多,10次最少;單核苷酸主要重復(fù)次數(shù)為12~15次,二核苷酸主要重復(fù)次數(shù)為 "7~11次,三核苷酸主要集中主要重復(fù)次數(shù)為5~7次,其他3種核苷酸類型主要重復(fù)次數(shù)為4次(圖 2)。各類型SSR數(shù)量均隨著重復(fù)長(zhǎng)度的增加而減少,其中15 bp重復(fù)長(zhǎng)度的SSR數(shù)量最多,19 bp數(shù)量最少;單核苷酸重復(fù)長(zhǎng)度主要分布在 "12~17 bp,二核苷酸重復(fù)長(zhǎng)度分布較為分散,主要集中在14 bp和16 bp,三至六核苷酸主要重復(fù)長(zhǎng)度分別為15 bp、16 bp和20 bp,六核苷酸主要重復(fù)長(zhǎng)度均為24 bp(圖 3)。
2.3 金蕎麥根系轉(zhuǎn)錄組SSR標(biāo)記開發(fā)與驗(yàn)證
用Krait軟件共設(shè)計(jì)1 961對(duì)SSR引物,隨機(jī)選擇115對(duì)引物對(duì)12個(gè)金蕎麥種質(zhì)的基因組DNA進(jìn)行擴(kuò)增,共有98對(duì)引物能在金蕎麥中有效擴(kuò)增,擴(kuò)增效率為85.22%;擴(kuò)增片段大小范圍為63~800 bp,其中36對(duì)SSR引物有多態(tài)性,多態(tài)性比率為36.73%(圖4)。36對(duì)多態(tài)性引物在12個(gè)金蕎麥種質(zhì)中共擴(kuò)增出138條帶,平均每對(duì)引物擴(kuò)增出3.83條,多態(tài)性條帶有110條,共擴(kuò)增出119種帶型,平均1對(duì)引物有3種帶型;多態(tài)信息含量(PIC)范圍為0.15~0.96,平均值為0.53;其中引物BCuni37047的總條帶數(shù)、多態(tài)性條帶數(shù)、帶型最多(8條、8條、9種)以及BCuni1746的PIC值最高(0.96)(表 3)。
2.4 金蕎麥種質(zhì)的聚類分析
基于36對(duì)多態(tài)性SSR引物分析12份金蕎麥種質(zhì)的遺傳關(guān)系(圖 5),從UPGMA聚類圖可以看出,12份金蕎麥種質(zhì)遺傳相似系數(shù)介于 "0.47~0.76,說明這12份金蕎麥種質(zhì)間存在著一定的遺傳變異。當(dāng)遺傳相似系數(shù)在0.61時(shí),供試種質(zhì)被分為4類。‘紅心金蕎’與其他在種質(zhì)遺傳背景較遠(yuǎn),單獨(dú)聚為一類;第Ⅱ類包含‘巨大F1’和‘B9-11’兩個(gè)種質(zhì),二者均收集于貴陽市,遺傳背景較為接近;第Ⅲ類包含4個(gè)種質(zhì),分別為‘A7-2’‘A6-6’‘A3-1’和‘金酮1號(hào)’,說明這 4個(gè)種質(zhì)具有相近的遺傳背景;其余5個(gè)種質(zhì)‘矮金蕎’‘A2-6’‘A11-6’‘A3-4’和‘A1-1’均來自貴州省被聚為第Ⅳ類,說明這5個(gè)種質(zhì)遺傳關(guān)系較近,與其他種質(zhì)遺傳關(guān)系較遠(yuǎn)(圖5)。
3 討論與結(jié)論
源自于轉(zhuǎn)錄組的SSR標(biāo)記,比來自基因組的SSR標(biāo)記具有更強(qiáng)的通用性,也更有利于后期與重要農(nóng)藝性和品質(zhì)狀進(jìn)行關(guān)聯(lián)分析[25]。本研究從金蕎麥轉(zhuǎn)錄組的46 923個(gè)Unigenes序列中共發(fā)現(xiàn)1 961個(gè)SSR位點(diǎn),SSR位點(diǎn)的出現(xiàn)頻率(1/17.00 kb)遠(yuǎn)小于甜蕎根系轉(zhuǎn)錄組(1/1.71 kb)[26]、種子轉(zhuǎn)錄組(1/1.17 kb)[27]和花序轉(zhuǎn)錄組(1/8.21 kb)[28]以及苦蕎籽粒轉(zhuǎn)錄組(1/7.81 kb、1/1.73 kb)[11,29]。SSR位點(diǎn)以三核苷酸重復(fù)基序?yàn)橹鳎壤秊?4.92%,與苦蕎轉(zhuǎn)錄組的研究結(jié)果一致[12],與甜蕎根系轉(zhuǎn)錄組以單核苷酸重復(fù)基序?yàn)橹鳎?8.13%)的研究結(jié)果不符[25]。金蕎麥根系轉(zhuǎn)錄組SSR以單核苷酸重復(fù)基元A/T數(shù)量最多,這與甜蕎[26]和苦蕎[12]轉(zhuǎn)錄組SSR的研究結(jié)果相同;二核苷酸重復(fù)基元以AG/CT最高,這與防風(fēng)的研究結(jié)果一致[30]。三核苷酸的優(yōu)勢(shì)基元是AAG/CTT,不僅與蕎麥屬轉(zhuǎn)錄組SSR的特征相同也與川黨參[31]、油茶[32]及黑棗[33]等雙子葉植物的研究結(jié)果相同,與水稻、高粱、玉米等單子葉植物CCG/CGG為優(yōu)勢(shì)基序的研究結(jié)果存在差異[34]。以上研究結(jié)果表明,SSR位點(diǎn)的出現(xiàn)頻率、三核苷酸重復(fù)類型和各類型的優(yōu)勢(shì)基序的差異主要與物種、樣品來源、序列數(shù)量、序列長(zhǎng)度統(tǒng)計(jì)對(duì)象及SSR搜索標(biāo)準(zhǔn)等因素有關(guān)。
蕎麥屬有20余個(gè)種[35],其分子標(biāo)記相關(guān)研究主要集中在甜蕎和苦蕎這兩個(gè)栽培種上,金蕎麥的研究較少且僅為基因組SSR標(biāo)記的開發(fā)。本研究根據(jù)金蕎麥根系轉(zhuǎn)錄組高通量測(cè)序數(shù)據(jù),設(shè)計(jì)合成了115對(duì)引物并進(jìn)行多態(tài)性驗(yàn)證,其中有98對(duì)引物能夠有效擴(kuò)增,擴(kuò)增效率為 "85.22%;其中有36對(duì)有多態(tài)性,多態(tài)性比率 "36.73%,高于苦蕎(32.97%)[29]與甜蕎 "(30.00%)[30,36]的多態(tài)率。36對(duì)多態(tài)性引物在12份金蕎麥種質(zhì)擴(kuò)增的PIC值為0.15~0.96,其中高度和中度多態(tài)性位點(diǎn)的SSR共有33對(duì),占比 "91.7%,表明金蕎麥基于轉(zhuǎn)錄組序列開發(fā)多態(tài)性較高的SSR標(biāo)記經(jīng)濟(jì)可行,能有效地豐富金蕎麥SSRs數(shù)據(jù)庫。
中國(guó)西南地區(qū)是世界公認(rèn)的蕎麥起源和遺傳多樣性中心,許多學(xué)者通過不同方法在分子水平上對(duì)金蕎麥種質(zhì)資源進(jìn)行了評(píng)價(jià)及鑒定,探索了每個(gè)聚類群組的遺傳特征、地理分布及生物學(xué)意義,揭示了金蕎麥樣品之間的遺傳關(guān)系。趙莎等[18]利用5對(duì)SSR標(biāo)記對(duì)不同產(chǎn)地野生金蕎麥SSR標(biāo)記鑒定,結(jié)果表明:云南、貴州居群的金蕎麥種群關(guān)系近,四川與云南、貴州兩居群種群關(guān)系相對(duì)更遠(yuǎn)。張春平等[37]利用隨機(jī)擴(kuò)增的多態(tài)性DNA(RAPD)標(biāo)記對(duì)重慶市7個(gè)野生金蕎麥居群的87個(gè)個(gè)體進(jìn)行遺傳多樣性分析和聚類分析,發(fā)現(xiàn)金蕎麥種內(nèi)有豐富的遺傳多樣性。鄧蓉等[38]應(yīng)用簡(jiǎn)單序列重復(fù)間區(qū)(ISSR)標(biāo)記對(duì)貴州省內(nèi)11個(gè)不同地域的金蕎麥種質(zhì)進(jìn)行了遺傳多樣性與親緣關(guān)系分析,發(fā)現(xiàn)11份種質(zhì)間遺傳差異較小且相對(duì)穩(wěn)定。程成[39]采用內(nèi)轉(zhuǎn)錄間隔區(qū)(ITS)、matK分子標(biāo)記手段對(duì)收集的云南省內(nèi)金蕎麥進(jìn)行遺傳多樣性和親緣關(guān)系分析,得出了海拔是影響其分類的主要因素的結(jié)論。本研究利用36對(duì)多態(tài)性SSR引物對(duì)12份金蕎麥種質(zhì)進(jìn)行了遺傳多樣性和聚類分析,遺傳相似系數(shù)為0.47~ "0.76,遺傳多樣性較好,每個(gè)類群間的遺傳相似系數(shù)均大于0.60,證明各類群間的親緣關(guān)系較近。
綜上所述,本研究揭示了金蕎麥根系轉(zhuǎn)錄組SSR位點(diǎn)的信息,開發(fā)了一批SSR分子標(biāo)記,獲得36對(duì)SSR標(biāo)記,揭示了金蕎麥種質(zhì)資源的遺傳多樣性。研究結(jié)果對(duì)于豐富蕎麥屬植物SSR分子標(biāo)記種類,促進(jìn)金蕎麥種質(zhì)資源的評(píng)價(jià)與利用、開展品種鑒定和雜交種真實(shí)性鑒定以及重要農(nóng)藝和品質(zhì)性狀的解析等奠定了基礎(chǔ)。
參考文獻(xiàn) Reference:
[1]CHEN Q F.A study of resources of Fagopyrum (Polygonaceae) native to China[J].Botanical Journal of the Linnean Society,1999,130(1):53-64.
[2]周美亮.蕎麥生物育種現(xiàn)狀與展望[J].中國(guó)基礎(chǔ)科學(xué),2022, "24(4):37-41,52.
ZHOU M L.Advances and prospects of the buckwheat biological breeding[J].China Basic Science,2022,24(4):37-41,52.
[3]LI X,LIU J,CHANG Q,et al.Antioxidant and antidiabetic activity of proanthocyanidins from Fagopyrum dibotrys[J].Molecules,2021,26(9):2417.
[4]ZHANG L L,HE Y,SHENG F,et al.Towards a better understanding of Fagopyrum dibotrys:a systematic review[J].Chinese Medicine,2021,16(1):89.
[5]楊璽文,張 燕,李隆云.藥用植物金蕎麥研究進(jìn)展[J].中國(guó)現(xiàn)代中藥,2019,21(6):837-846.
YANG X W,ZHANG Y,LI L Y.Advances in studies on medicinal plant of Fagopyrum dibotrys[J].Modern Chinese Medicine,2019,21(6):837-846.
[6]LOU W,LYU Y,HU L,et al. Development and characterization of EST-SSR markers in pecan (Carya illinoinensis) [J].Trees,2023,37(2):297-307.
[7]YE Y,YAN C,XU K,et al.Genetic diversity and population genetics of cuttlefish Sepiella japonica based on newly developed SSR markers[J].Pakistan Journal of Zoology,2022,55(4):1907-1915.
[8]RAHMAN S U,JAMIL S,SHAHZAD R,et al.Genetic diversity and DNA fingerprinting of potato varieties using simple sequence repeat (SSR) markers[J].Journal of Animal and Plant Sciences,2022,32(3):775-783.
[9]孟 艷,盧倩倩,劉小愿,等.基于SSR標(biāo)記對(duì)65份大白菜自交系的聚類分析[J].西北農(nóng)業(yè)學(xué)報(bào),2021,30(11):1656-1662.
MENG Y,LU Q Q,LIU X Y,et al.Cluster analysis of 65 Chinese cabbage inbred lines based on SSR markers[J].Acta Agriculturae Boreali-occidentalis Sinica,2021,30(11):1656-1662.[ZK)]
[10] 蔡齊宗,王佳蕊,陳慶富,等.苦蕎全基因組SSR位點(diǎn)鑒定及分子標(biāo)記開發(fā)[J].河南農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,56(3):392-400.
CAI Q Z,WANG J R,CHEN Q F,et al. Identification of SSR loci and molecular marker development in the whole genome of"" tartary buckwheat [J].Journal of Henan Agricultural University,2022,56(3):392-400.
[11]賀潤(rùn)麗,尹桂芳,李春花,等.苦蕎種皮轉(zhuǎn)錄組SSR位點(diǎn)信息分析及其分子標(biāo)記的開發(fā)[J].分子植物育種,2020, "18(18):6085-6092.
HE R L,YIN G F,LI CH H,et al.Development of molecular markers and SSR loci information analysis of transcriptome in tartary" buckwheat seed coat[J].Molecular Plant Breeding,2020,18(18):6085-6092.
[12]杜 偉,王東航,侯思宇,等.基于苦蕎全長(zhǎng)轉(zhuǎn)錄組測(cè)序開發(fā)SSR標(biāo)記及遺傳多樣性分析[J].植物生理學(xué)報(bào),2020,56(7):1432-1444.
DU W,WANG D H,HOU S Y,et al.Development of SSR markers based on full-length transcriptome sequencing and its" application for genetic diversity analysis in" Fagopyrum tataricum[J].Plant Physiology Journal,2020,56(7):1432-1444.
[13]陳崢峰,薛賢濱,黎瑞源,等.苦蕎薄殼性緊密連鎖SSR標(biāo)記的開發(fā)及驗(yàn)證[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2022,30(8):1622-1631.
CHEN ZH" F,XUE X B,LI R Y,et al.Development and validation of SSR markers closely linked to thin shell in tartary buckwheat" (Fagopyrum tataricum) [J].Journal of Agricultural Biotechnology,2022,30(8):1622-1631.
[14]李金龍.中國(guó)甜蕎種質(zhì)資源性狀評(píng)價(jià)及其遺傳多樣性分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2021.
LI J L.Character evaluation and genetic diversity analysis of Chinese buckwheat germplasm resources[D].Beijing:Chinese Academy of Agricultural Science,2021.
[15]李金龍,范" 昱,趙夢(mèng)雨,等.基于表型性狀和SSR分子標(biāo)記構(gòu)建甜蕎初級(jí)核心種質(zhì)[J].植物遺傳資源學(xué)報(bào),2021, "22(5):1240-1247.
LI J L,F(xiàn)AN Y,ZHAO M Y,et al.Construction of primary core collection of buckwheat germplasm resources bases on phenotypic" traits and SSR[J].Journal of Plant Genetic Resources,2021,22(5):1240-1247.
[16]李曉瑜,方小梅,伍浩天,等.苦蕎種質(zhì)資源主要農(nóng)藝性狀SSR標(biāo)記關(guān)聯(lián)分析[J].作物學(xué)報(bào),2022,48(12):3091-3107.
LI X Y,F(xiàn)ANG X M,WU H T,et al.Association analysis of agronomic traits of" tartary buckwheat germplasm resources with" SSR markers[J].Acta Agronomica Sinica,2022,48(12):3091-3107.
[17]HE M,HE Y,ZHANG K,et al.Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation[J].The New phytologist,2022,235(5):1927-1943.
[18]趙 莎,鄭司浩,李進(jìn)瞳,等.不同產(chǎn)地野生金蕎麥SSR標(biāo)記鑒定[J].中國(guó)現(xiàn)代中藥,2021,23(12):2067-2071.
ZHAO SH,ZHENG S H,LI J T,et al.Identification of SSR markers for wild Fagopyrum dibotrys from different producing areas[J].China Journal of Chinese Materia Medica,2021,23(12):2067-2071.
[19]任 奎.中國(guó)野生金蕎麥的資源調(diào)查與遺傳多樣性分析[D].湖南湘潭:湖南科技大學(xué),2022.
REN K.Resource investigation and genetic diversity analysis of wild Fagopyrum.cymosum in China[D].Xiangtan Hunan:Hunan University of Science and Technology,2022.
[20]黃 娟,鄧 嬌,陳慶富.蕎麥根的轉(zhuǎn)錄組學(xué)分析及黃酮合成基因的鑒定[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2017,19(2):9-19.
HUANG J,DENG J,CHEN Q F.Transcriptome analysis of fagopyrum root and identification of genes involved in flavonoid biosynthesis[J].Journal of Agricultural Science and Technology,2017,19(2):9-19.
[21]張 雄,史開志,尚以順,等.黔金蕎麥1號(hào)轉(zhuǎn)錄組測(cè)序及生物信息學(xué)分析[J].黑龍江畜牧獸醫(yī),2020,63(9):122-126.
ZHANG X,SHI K ZH,SHANG Y SH,et al.Transcriptome sequencing and bioinformatics analysis of Qianjinqiaomai 1[J].Heilongjiang Animal Science and Veterinary Medicine,2020,63(9):122-126.
[22]呂 丹.苦蕎種質(zhì)資源產(chǎn)量性狀和籽粒黃酮含量與SSR標(biāo)記的關(guān)聯(lián)分析[D].貴陽:貴州師范大學(xué),2020.
LV D.Association analysis of yield traits and flavonoids content ingrains with SSR markers in Tartary buckwheat germplasms[D].Guiyang:Guizhou Normal University,2020.
[23]白志元,楊玉花,武國(guó)平,等.68個(gè)大豆品種(系)遺傳多樣性分析[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,25(3):17-24.
BAI ZH Y,YANG Y H,WU G P,et al.Genetic diversity analysis of 68 soybean varieties[J].Journal of China Agricultural University,2020,25(3):17-24.
[24]BOZHKO M,RIEGEL R,SCHUBERT R,et al. A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity[J].Molecular Ecology.2003,12(11):3147-3155.
[25]陳夢(mèng)穎,戴瑞賢,范玉玲,等.華細(xì)辛轉(zhuǎn)錄組SSR標(biāo)記的開發(fā)及其在華細(xì)辛遺傳多樣性分析中的應(yīng)用[J].中國(guó)中藥雜志,2023,48(20):5519-5530.
CHEN M Y,DAI R X,F(xiàn)AN Y L,et al.Exploration of transcriptome SSR markers and its application in genetic diversity assessmentnbsp; of Asarum sieboldii[J].China Journal of Chinese Materia Medica,2023,48(20):5519-5530.
[26]石桃雄,黎瑞源,黃 娟,等.甜蕎根轉(zhuǎn)錄組SSR位點(diǎn)特征分析[J].江西農(nóng)業(yè)學(xué)報(bào),2021,33(8):1-5.
SHI T X,LI R Y,HUANG J,et al.SSR loci characteristics of root transcriptome in common buckwheat[J].Acta Agriculturae Jiangxi,2021,33(8):1-5.
[27]SHI T X,LI R Y,CHEN Q F.et al. De novo sequencing of seed transcriptome and development of genic-SSR markers in common buckwheat (Fagopyrum esculentum) [J].Molecular Breeding ,2017,37(12):147.
[28]LIU Y,F(xiàn)ANG X,TANG T,et al.Inflorescence transcriptome sequencing and development of new EST-SSR markers in common buckwheat (Fagopyrum esculentum) [J].Plants,2022,11(6):742.
[29]黎瑞源,潘 凡,陳慶富,等.苦蕎轉(zhuǎn)錄組EST-SSR發(fā)掘及多態(tài)性分析[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2015,17(4):42-52.
LI R Y,PAN F,CHEN Q F,et al.Excavation and polymorphism analysis of EST-SSR from transcriptome of" tarary buckwheat[J].Journal of Agricultural Science and Technology,2015,17(4):42-52.
[30]李 爽,寇佩雯,許祎珂,等.基于轉(zhuǎn)錄組的防風(fēng)SSR分子標(biāo)記開發(fā)及應(yīng)用[J].中國(guó)中藥雜志,2024,49(3):717-727.
LI SH,KOU P W,XU Y K,et al.Development and application of SSR markers of Saposhnikovia divaricata based on transcriptome[J].China Journal of Chinese Materia Medica, 2024,49(3):717-727.
[31]蔣小剛,周武先,王 華,等.川黨參轉(zhuǎn)錄組EST-SSR位點(diǎn)分析[J].西南農(nóng)業(yè)學(xué)報(bào),2023,36(6):1132-1140.
JIANG X G,ZHOU W X,WANG H,et al.Analysis of EST-SSR locus in Codonopsis tangshen transcriptom[J].Southwest China Journal of Agricultural Sciences,2023,36(6):1132-1140.
[32]張 震,許彥明,陳永忠,等.油茶轉(zhuǎn)錄組測(cè)序與SSR特征分析[J].西南林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2018,38(6):63-68.
ZHANG ZH,XU Y M,CHEN Y ZH,et al.Transcriptome sequencing and analysis of SSR characteristics of camellia oleifera[J].Journal of Southwest Forestry University (Natural Sciences),2018,38(6):63-68.
[33]龐丁瑋,武素然,張 軍,等.基于轉(zhuǎn)錄組測(cè)序的黑棗EST-SSR引物開發(fā)與鑒定分析[J].分子植物育種,2021, "19(1):200-208.
PANG D W,WU S R,ZHANG J,et al.EST-SSR primer development and identification analysis based on transcriptome sequencing of diospyros lotus[J].Molecular Plant Breeding,2021,19(1):200-208.
[34]KANTETY R V,LA ROTA M,MATTHEWS D E,et al.Data mining for simple sequence repeats in expressed sequence tags from barley,maize,rice,sorghum and wheat[J].Plant Molecular Biology,2002,48(5/6),501-510.
[35]唐 宇,邵繼榮,周美亮.中國(guó)蕎麥屬植物分類學(xué)的修訂[J].植物遺傳資源學(xué)報(bào),2019,20(3):646-653.
TANG Y,SHAO J R,ZHOU M L.A taxonomic revision of" Fagopyrum Mill from China[J].Journal of Plant Genetic Resources,2019,20(3):646-653.
[36]石桃雄,黎瑞源,郭菊卉,等.基于普通蕎麥種子表達(dá)序列標(biāo)簽微衛(wèi)星標(biāo)記的開發(fā)[J].貴州農(nóng)業(yè)科學(xué),2014,42(3):1-5,22.
SHI T X,LI R Y,GUO J H,et al.Development of SSR molecular markers based on expressed sequence tags from seeds of Fagopyrum" esculentum[J].Guizhou Agricultural Sciences,2014,42(3):1-5,22.
[37]張春平,何 平,何俊星,等.ISSR分子標(biāo)記對(duì)金蕎麥8個(gè)野生居群的遺傳多樣性分析[J].中草藥,2010,41(9):1519-1522.
ZHANG CH P,HE P,HE J X,et al.ISSR analysis on genetic diversity of Fagopyrum cymosum collected from eight wild" populations[J].Chinese Traditional and Herbal Drugs,2010,41(9):1519-1522.
[38]鄧 "蓉,王安娜,張定紅,等.貴州金蕎麥種質(zhì)資源遺傳多樣性ISSR研究[J].種子,2018,37(1):4-7.
DENG R,WANG A N,ZHANG D H,et al.The genetic diversity ISSR study on the Fagopyrum dibotrys (D.Don) Hara of" Guizhou[J].Seed,2018,37(1):4-7.
[39]程 成.云南金蕎麥多樣性分析及其黃酮類物質(zhì)生物合成機(jī)制的初步研究[D].湖南湘潭:湖南科技大學(xué),2019.
CHENG CH.Analysis of diversity of the Fagopyrum cymosum in Yunnan and preliminary study on the biosynthesis mechanism of" flavonoids[D].Xiangtan Hunan:Hunan University of Science and Technology,2019.
Transcriptome SSR Loci Analysis and Molecular MarkerDevelopment" in" Fagopyrum cymosum
Abstract The medical and healthcare value of Fagopyrum cymosum is widely acknowledged.However, the systematic evaluation and conservation of its germplasm resources face challenges due to a lack of molecular tools.SSR markers, crucial for assessing plant diversity, identifying species, and mapping genes, offer a solution.This study explored the distribution of SSR loci within the root transcriptomes of Fagopyrum cymosum to develop valuable SSR markers.Krait software was utilized to analyze 46 923 Unigene sequences,identifying 1 961 SSR loci across 1 783 Unigenes, indicating a 3.80% occurrence rate with an average spacing of 1 per 17.00 kb.Trinucleotide repeats emerged as the predominant form, accounting for 54.92%, overshadowing mononucleotide (23.36%) and dinucleotide (10.76%) repeats.Among 104 distinct repeat motifs, A/T motifs were the most common at" "23.10%, followed by AAG/CTT (16.32%) and AG/CT (5.61%).The synthesis of 115 SSR primer pairs led to polymorphic screening across 12 Fagopyrum cymosum germplasm samples, resulting in 98 pairs (85.2%) amplifying expected bands and 36 pairs exhibiting polymorphism.The average allelic variation detected by a single SSR primer was 3.83, with polymorphic information content (PIC) ranging from 0.15 to 0.96, averaging 0.53.Genetic similarity coefficients among the 12 analyzed" Fagopyrum cymosum germplasms ranged from 0.47 to 0.76, with a mean of 0.55, demonstrating notable genetic diversity.This study not only identifies SSR markers within the root transcriptome of Fagopyrum cymosum but also significantly enriches the repository of molecular markers for comprehensive genetic diversity studies, species identification, and the investigation of significant trait genetic mechanisms.This foundation supports the advancement of molecular breeding research in Fagopyrum cymosum.
Key words Fagopyrum cymosum germplasms; Transcriptome; SSR molecular marker; Cluster analysis