













摘" " 要:【目的】探究不同架形栽培的陽光玫瑰葡萄對(duì)夏季自然高溫?zé)岷Φ纳砩鷳B(tài)響應(yīng)。【方法】以陽光玫瑰葡萄為試材,設(shè)置V形架、飛鳥形架、H形架3種架形處理,監(jiān)測(cè)夏季(6—8月)葉幕溫濕度變化情況,于連續(xù)自然高溫(>38 ℃)發(fā)生前6 d及發(fā)生后的第3、6、9、15天測(cè)定葡萄葉片光合色素含量、光合參數(shù)、葉綠素?zé)晒鈪?shù)及抗逆基因(熱激蛋白基因、熱激轉(zhuǎn)錄因子基因、GLOS1)的表達(dá)量,并分析自然高溫發(fā)生前后葉片組織結(jié)構(gòu)的變化。【結(jié)果】夏季自然高溫天氣下,3種架形中飛鳥形架葡萄葉幕溫度最低,而濕度最高,V形架次之,葡萄葉片Pn下降。葡萄葉片柵欄組織厚度、Pn、Chl a、Chl b、Car含量及Fm、Fv/Fm、Fv/Fo、ΦPSII、qP、ETR值均表現(xiàn)為飛鳥形架>V形架>H形架,而葉片厚度、海綿組織厚度、Gs、Tr、Ci、Fo、NPQ則表現(xiàn)為H形架>V形架>飛鳥形架;飛鳥形架葡萄葉片VvHSP17.9、VvHSP22、VvHSP70、VvHSP90、VvHSP100、VvHSP101、VvHSFA1、VvHSFA2、VvHSFB1和GLOS1等10個(gè)基因的相對(duì)表達(dá)量最高,其中H形架葡萄葉片VvHSP17.9、VvHSP90、VvHSP70基因的相對(duì)表達(dá)量高于V形架,其余7個(gè)基因的相對(duì)表達(dá)量則低于V形架。【結(jié)論】夏季自然高溫下,3種架形中飛鳥形架陽光玫瑰葡萄葉幕溫度較低、濕度較高,葉肉組織緊實(shí)、光合色素含量高、Pn較高,抗逆基因表達(dá)量較高、PSⅡ反應(yīng)中心較為穩(wěn)定是其耐熱性較高的主要原因。
關(guān)鍵詞:陽光玫瑰葡萄;架形;抗高溫;葉幕生態(tài);光合生理
中圖分類號(hào):S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)12-2444-19
Different trellis systems on canopy microclimate and heat stress-responding physiology of Shine Muscat grape
LUO Ling1, 2, LIU Wei2, LIANG Dong1, MA Yijun2, LI Ran2, Lü Xiulan1*
(1College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; 2Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China)
Abstract: 【Objective】 With the ongoing impact of global warming, the frequency of extremely hot weather during summer have increased, and heat injury has become a significant disaster affecting grape production. Particularly in the southern regions, where grapes are primarily cultivated in controlled environments like greenhouse, and the relatively enclosed conditions intensify high-temperature stress (HTS). Therefore, studying how adult grapevines respond to HTS in natural surroundings is crucial. Assessing the physiological response of adult grapevines to HTS and choosing trellis systems that minimize HTS are vital for studying heat-resistant mechanisms and heat-resistant cultivation of grapes. 【Methods】 With Shine Muscat grapevines as the experimental material, three trellis-system treatments of V-shaped (Vs), Flying Bird-shaped (Fs) and H-shaped (Hs) were implemented. Canopy temperature and humidity were collected from June to August. Subsequently, the levels of photosynthetic pigments, photosynthetic parameters, chlorophyll fluorescence parameters, and the expression of resistance genes [heat shock protein genes (Hsp), and heat shock transcription factor genes (Hsf), GLOS1] were assessed. Changes in leaf tissue structure of different tree shapes before and after high-temperature occurrence in the field were analyzed. 【Results】 The frequency and intensity of extreme temperature on the canopy during the hot months in summer were significantly lower in Fs and Vs compared to those in Hs. In August, the frequency of temperatures above 40 ℃ in Fs canopy decreased by 45.07% and 46.20% compared to those in Vs and Hs, respectively. Canopy humidity decreased gradually with the rising temperatures from June to August, with Fs having the highest humidity, followed by Vs, and the lowest in Hs. After 15 days of HTS, grapevine leaf thickness increased, with spongy tissue pores showing a notable increase. Compared to pre-high temperature, the thickness of palisade and spongy tissues of Fs changed less, while the thickness of spongy tissues of Vs increased by 43.79%, and the thickness of palisade and spongy tissues of Hs increased by 24.70% and 42.51%, respectively. As the number of days of HTS increased, the contents of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Car) in the leaves of all the three trellis systems first showed an upward trend and then a downward trend. Similarly, the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 concentration (Ci) also first showed an upward trend and then a downward trend. The decrease in Pn observed in the leaves of all the three trellis systems at the end of the stress period was accompanied by a significant decrease in Gs, Tr, and Ci, indicating that stomatal limiting factors were the primary reason for the decrease in Pn. Then, the results of correlation analysis showed that Pn was significantly positively correlated with photosynthetic pigment content and photochemical efficiency. However, no significant correlation was observed between Pn and Gs, Tr, and Ci, which suggests that non-stomatal limiting factors such as the reduction of photosynthetic pigment content and the impairment of the photosynthetic apparatus also caused the decrease in Pn. During the experiment, the chlorophyll and carotenoid contents were highest in Fs, followed by Vs, and lowest in Hs. The photosynthetic pigment contents of Fs were 6.74% and 49.87% higher than those of Vs and Hs after 6 days of HTS, respectively, and Pn of Fs was 14.21% and 76.22% higher than those of Vs and Hs after 15 days of HTS, respectively. Initial fluorescence (Fo) and non-photochemical quenching coefficient (NPQ) constantly increased. The maximum fluorescence yield (Fm) and photochemical quenching coefficient (qP) increased first and then decreased. The maximum energy conversion efficiency (Fv/Fm), potential photochemical activity (Fv/Fo) and actual photochemical efficiency (ΦPSⅡ) remained stable in the early stages of HTS but decreased rapidly later. The ETR first decreased slightly followed by a slight increase, and then a rapid decrease after 6 days of HTS. During the period of HTS, the change range of the chlorophyll fluorescence parameters in Hs was greater, leading to significantly higher levels of Fo and NPQ compared to Vs and Fs (p<0.05). However, the remaining fluorescence parameters of Hs were notably lower than those of Vs and Fs. No significant differences were observed between Vs and Fs, except for NPQ, which was significantly higher than that of Fs. In this experiment, HTS induced the expression of resistance genes in the leaves of all three trellis systems. The relative expression levels of VvHSP17.9 and VvHSP90 increased, but the other heat shock protein genes (VvHSP22, VvHSP70, VvHSP100, and VvHSP101) and three heat shock transcription factor genes (VvHSFA1, VvHSFA2, and VvHSFB1) along with GLOS1 showed a general trend of first increasing followed by a decreasing trend. Compared to Vs and Hs, Fs showed the highest up-regulation of the nine genes mentioned above except for VvHSP100 under HTS. The expression levels of VvHSP22, VvHSP101, VvHSFA1, VvHSFA2, VvHSFB1, and GLOS1 were significantly higher in Vs than those in Hs. Conversely, the expression levels of VvHSP17.9 and VvHSP70 were significantly lower in Vs than those in Hs. The results of correlation analysis indicated that VvHSP70, VvHSP101, and VvHSFB1 were significantly positively correlated with Chl a, Chl b, Car, Pn, Gs, Ci, Fm, and qP. Conversely, VvHSP17.9, VvHSP90, VvHSFA1, and GOLS1 exhibited significant negative correlations with Fv/Fm, Fv/Fo, ΦPSII, and ETR. VvHSP22, VvHSP100 and VvHSFA2 showed no significant correlation with photosynthetic pigments, photosynthetic parameters, or chlorophyll fluorescence parameters. Under high-temperature treatment, the canopy temperature was lower and humidity higher in Fs, leading to a reduction in the combined stress of high temperature and drought. Additionally, Fs had fewer changes in leaf tissue structure, higher photosynthetic pigment content and photosynthetic rate, a more stable PSⅡ reaction center, and higher expression levels of resistance genes like VvHSP, VvHSF and GLOS1 compared to those of Vs and Hs. 【Conclusion】 The long-term high-temperature treatment destroyed the tissue structure of grape leaves, reduced the PSⅡ activity and inhibited photosynthesis of the three trellis systems. Compared with Vs and Hs, Fs had stronger resistance to HTS and was more adaptative to high-temperature environments. Hs had the lowest heat resistance.
Key words: Shine Muscat grape; Trellis systems; High temperature resistance; Canopy-microclimate; Photosynthetic physiology
陽光玫瑰是日本選育出的中晚熟葡萄品種,因其無核(人工處理后)、皮薄、甜度高和香氣濃郁等優(yōu)異品質(zhì)以及較強(qiáng)的環(huán)境適應(yīng)性,近年來廣受消費(fèi)者和種植者喜愛[1]。隨著農(nóng)業(yè)栽培技術(shù)和設(shè)施的不斷優(yōu)化,當(dāng)前陽光玫瑰已成為南方地區(qū)發(fā)展的熱門品種之一[2]。然而隨著全球氣候變暖,中國南方夏季極端高溫的日數(shù)、頻率和強(qiáng)度全區(qū)域呈現(xiàn)明顯增長趨勢(shì),極端高溫天氣已成為南方夏季的一種“新常態(tài)”[3-4]。夏季持續(xù)高溫會(huì)導(dǎo)致葡萄葉片卷枯、果實(shí)出現(xiàn)日灼,嚴(yán)重影響果實(shí)的產(chǎn)量和品質(zhì)[5],而且南方地區(qū)葡萄普遍采用的避雨栽培模式也會(huì)進(jìn)一步加重夏季高溫逆境的發(fā)生。高溫?zé)岷σ殉蔀槟戏降貐^(qū)陽光玫瑰健康生產(chǎn)最主要的限制因素。
葡萄架形可通過改變葡萄葉幕形狀,改變?nèi)~片群體的受光面積及園內(nèi)光照度、溫度、濕度、通風(fēng)性等微環(huán)境因子,也可調(diào)控葡萄營養(yǎng)生長和生殖生長的平衡,影響樹體長勢(shì),最終影響葡萄果實(shí)產(chǎn)量及品質(zhì)[6]。選用合理的架形有利于減少園內(nèi)高溫郁積,提高樹體抗逆性,增強(qiáng)葡萄對(duì)高溫的適應(yīng)力。因此,觀測(cè)不同架形陽光玫瑰葡萄在自然高溫天氣下的生長表現(xiàn),評(píng)價(jià)不同架形陽光玫瑰葡萄耐熱性的差異,對(duì)保證夏季陽光玫瑰葡萄正常生長和果實(shí)發(fā)育具有重要意義。
由于受地形和氣候等多方面的影響,南方地區(qū)葡萄栽培多采用V形架和飛鳥形架[7]。近年來,隨著葡萄現(xiàn)代化種植的發(fā)展,H形平棚架因修剪技術(shù)簡(jiǎn)單、標(biāo)準(zhǔn)化生產(chǎn)程度高以及架面下活動(dòng)空間大,在南方平地果園和葡萄觀光園采用的也越來越多[8]。在植物對(duì)高溫的生理響應(yīng)中,光合作用是最敏感的生理過程[9]。高溫會(huì)導(dǎo)致氣孔關(guān)閉、葉綠素分解、光合作用的相關(guān)酶鈍化或變性,使葉片光合作用減弱[10]。高溫還會(huì)破壞光系統(tǒng)Ⅱ(PSⅡ),使PSⅡ捕光天線色素分解、反應(yīng)中心受損、放氧復(fù)合體失活以及受體側(cè)光合電子傳遞受阻,從而造成植物光能捕獲減少、熱耗散增加,最終導(dǎo)致葉片光化學(xué)效率和光能利用率降低[9]。與PSⅡ相比,PSⅠ在高溫下比較穩(wěn)定[11]。另外,植物葉片組織結(jié)構(gòu)在高溫脅迫下的變化也十分明顯,正常情況下植物葉肉組織排列緊密,而高溫脅迫會(huì)導(dǎo)致葉片組織發(fā)生紊亂,在葡萄[12]、甜櫻桃[13]、虎耳草[14]等植物中均發(fā)現(xiàn)葉肉組織在高溫后出現(xiàn)膨大、細(xì)胞排列疏松等現(xiàn)象。熱激蛋白(Heat Shock Protein,HSP)是植物受高溫刺激后大量合成的一類蛋白質(zhì),大部分HSP的功能是作為分子伴侶參與蛋白質(zhì)的運(yùn)輸、折疊、組裝和定位,阻止高溫脅迫下一些蛋白質(zhì)的錯(cuò)誤折疊,幫助變性蛋白質(zhì)復(fù)性或降解,從而減少高溫下細(xì)胞內(nèi)受損蛋白的積累,維護(hù)細(xì)胞正常功能,減少高溫傷害[15]。HSP根據(jù)分子質(zhì)量大小可分為HSP100s、HSP90s、HSP70s、HSP60s和分子質(zhì)量為15~50 kDa的小分子熱激蛋白[16-17]。熱激轉(zhuǎn)錄因子(Heat Shock Factor,HSF)位于信號(hào)傳導(dǎo)途徑下游,當(dāng)接收到外界傳來的熱激信號(hào)時(shí),就會(huì)與熱激蛋白基因的啟動(dòng)子結(jié)合,從而促進(jìn)HSPS基因的表達(dá),增加植物的耐熱性[18-19]。HSFS根據(jù)低聚物結(jié)構(gòu)域的特點(diǎn)可以分為三大類,即HSFA、HSFB和HSFC,在高溫處理的葡萄及擬南芥中發(fā)現(xiàn),HSFA2可與一個(gè)肌醇半乳糖苷合成相關(guān)基因GLOS1(Galactinol Synthesis)啟動(dòng)子結(jié)合,共同上調(diào)表達(dá)參與耐熱性調(diào)節(jié)[20-21]。
目前,關(guān)于不同架形葡萄耐熱性差異的研究較少。筆者在本研究中以陽光玫瑰為試驗(yàn)材料,在夏季田間高溫環(huán)境下,觀測(cè)V形架、飛鳥形架和H形架3種架形葡萄葉片的組織結(jié)構(gòu)、光合特性、葉綠素?zé)晒馓匦院涂鼓婊虻谋磉_(dá)量,綜合分析不同架形葡萄高溫脅迫應(yīng)答差異,以期為葡萄耐熱機(jī)制及抗熱栽培研究提供理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)材料與處理
試驗(yàn)于2022年6—8月在四川省成都市雙流區(qū)太平鎮(zhèn)前進(jìn)村5組“一米陽光”葡萄園內(nèi)(N 30°27’,E 104°13’)進(jìn)行,年均氣溫16.5 ℃,年均降水量895.6 mm,年均日照時(shí)數(shù)1 032.9 h。試驗(yàn)材料為陽光玫瑰葡萄,樹齡為5 a(年),南北行向種植,設(shè)置V形架(V-shaped,Vs)、飛鳥形架(Flying Bird-shaped,F(xiàn)s)和H形架(H-shaped,Vs)3種架形處理。V形架株行距2 m×3 m,葉幕分布高度為距地面1.0~1.9 m,葉幕開張角度約為45°;飛鳥形架株行距2 m×3 m,葉幕分布高度為距地面1.5 ~1.8 m,葉幕開張角度約為55°,新梢下垂長度約60 cm;H形架株行距4 m×6 m,葉幕水平分布于距地面1.8 m高度。3種架形均采用避雨栽培模式,避雨棚為連棟鋼架拱棚,單棚跨6 m,脊高4.3 m,肩高2.5 m,南北向種植,同側(cè)新梢間距約為20 cm,新梢主梢保留12枚葉片左右,生長期內(nèi)修剪及肥水管理等技術(shù)基本一致。
成都地區(qū)每年會(huì)出現(xiàn)連續(xù)極端高溫天氣,將日最高氣溫>38 ℃出現(xiàn)的第1天定義為田間高溫脅迫第1天。2022年8月2日,根據(jù)天氣預(yù)報(bào)試驗(yàn)基地日最高氣溫不超過38 ℃,因此將8月2日定義為高溫發(fā)生前,并開展相關(guān)指標(biāo)的調(diào)查收集。到2022年8月8日,試驗(yàn)基地露地日最高氣溫超過38 ℃,達(dá)到了39.2 ℃,且根據(jù)天氣預(yù)報(bào)此后將出現(xiàn)連續(xù)高溫,因此將8月8日定義為自然高溫脅迫第1天,而后每間隔2~3 d開展一次相關(guān)調(diào)查,直至高溫結(jié)束。具體試驗(yàn)開展時(shí)間為自然高溫發(fā)生前6 d(8月2日)及脅迫發(fā)生后的3、6、9、15 d(8月10日、13日、16日、22日),用B6代表自然高溫發(fā)生前6 d,用A3、A6、A9、A15分別代表高溫脅迫發(fā)生后的3、6、9、15 d。如圖1所示為2022年8月試驗(yàn)區(qū)實(shí)際露地日均溫和日最高溫的變化情況,8月8日之前日最高溫低于38 ℃,在8月8—24日每天至少有1 h的溫度超過38 ℃,并且最高溫達(dá)到42 ℃。
在試驗(yàn)開始前每處理選取10株生長一致的葡萄植株掛牌標(biāo)記確定為樣株,于B6、A3、A6、A9、A15日采集葡萄植株第6~8節(jié)位葉片進(jìn)行光合色素含量測(cè)定,每處理每次采集10枚葉片,其中第6、7、8節(jié)位每次分別采摘3、4、3枚葉片;再于當(dāng)日13:00—14:00每處理采集新展開幼葉10枚用于抗逆基因的表達(dá)分析。同時(shí),試驗(yàn)開始前每處理在樣株中選取第7節(jié)位葉片6枚進(jìn)行標(biāo)記,其中3枚用于B6、A3、A6、A9、A15日連續(xù)觀測(cè)葡萄葉片光合參數(shù)日變化,另外3枚用于連續(xù)觀測(cè)葉綠素?zé)晒鈪?shù)日變化。另外,于B6和A15日分別采集第7節(jié)位葉片5枚,用于制作石蠟切片觀測(cè)葉片解剖結(jié)構(gòu)。所有分析測(cè)試所用的葉片均選擇行間內(nèi)同一朝向葉片。
1.2 測(cè)定項(xiàng)目與方法
1.2.1 高溫期間溫、濕度監(jiān)測(cè) 于2022年6—8月成都夏季高溫期間,在果穗附近葉幕處懸掛溫、濕度記錄儀(ZDR-U1W1S-T2,杭州澤大儀器有限公司),每處理3臺(tái),每1 h記錄1次葉幕溫、濕度,直至試驗(yàn)結(jié)束。統(tǒng)計(jì)6—8月的日均溫、月均溫、月最高溫、月最低溫、極溫差(每個(gè)月的最高溫與最低溫之差);計(jì)算>40 ℃及>45 ℃的高溫時(shí)長,將其與該月份的總時(shí)長相比得到該月的高溫比例;統(tǒng)計(jì)6—8月的日均濕度、月均濕度、月最高濕度、月最低濕度,并檢索濕度記錄儀60%~80%及>80%的濕度時(shí)長,與該月總時(shí)長相比得到該濕度時(shí)長比例。
1.2.2 高溫前后葉片組織結(jié)構(gòu)觀測(cè) 石蠟切片參照范志霞等[22]的方法略作調(diào)整制作。以葉主脈中部為中心剪取0.5 cm×1.0 cm的小塊鮮樣,立即用FAA固定液(百奧萊博)固定24 h以上,再取固定好的葉片經(jīng)不同濃度乙醇脫水、二甲苯透明、浸蠟、包埋處理后,制成厚度為10 μm的連續(xù)石蠟切片,后經(jīng)脫蠟、番紅-固綠染色后,使用熒光顯微鏡(BX41,Olympus)測(cè)微尺測(cè)量柵欄組織、海綿組織和葉片厚度,計(jì)算葉片柵海比。每1個(gè)樣片觀察10個(gè)視野,取平均值。
1.2.3 光合色素含量測(cè)定 測(cè)定方法參照李合生[23]和張潔[7]的方法,略有改動(dòng)。取0.1 g葉片,置于10 mL 80%丙酮內(nèi),在室溫下避光浸提24 h,用紫外-可見分光光度計(jì)UV-1800(島津,日本)測(cè)定663、645和470 nm波長下的吸光值,計(jì)算葉綠素a(Chl a)、葉綠素b(Chl b)、類胡蘿卜素(Car)含量,同時(shí)計(jì)算總光合色素含量=Chl a+Chl b+Car。
1.2.4 光合作用測(cè)定 在08:00—18:00期間,每隔2 h用便攜式光合儀LI-6400(LI-COR,美國)測(cè)定葉片的凈光合速率(Pn)、氣孔導(dǎo)度(Gs)、蒸騰速率(Tr)和胞間二氧化碳濃度(Ci),取日平均值。設(shè)定參數(shù)為:流速500 μmol·s-1,相對(duì)濕度60%,CO2濃度400 μmol·mol-1,溫度25 ℃,光照度1500 μmol·m-2·s-1。測(cè)定當(dāng)天晴朗無風(fēng),每種架形測(cè)定3枚葉片,3次重復(fù)。
1.2.5 葉綠素?zé)晒鈪?shù)測(cè)定 用便攜式調(diào)制葉綠素?zé)晒鈨xPAM2500(Walz,德國)測(cè)定葉綠素?zé)晒鈪?shù),測(cè)定時(shí)間同1.2.4中所述光合參數(shù)的測(cè)定時(shí)間。測(cè)定前將葉片置于暗適應(yīng)夾中適應(yīng)30 min,依次測(cè)定葉片初始熒光(Fo)、最大熒光(Fm)、最大光化學(xué)效率(Fv/Fm)、潛在光化學(xué)效率(Fv/Fo)、實(shí)際光化學(xué)效率(ΦPSII)、光化學(xué)猝滅系數(shù)(qP)、非光化學(xué)猝滅系數(shù)(NPQ)與電子傳遞速率(ETR)。每種架形測(cè)定3枚葉片。
1.2.6 抗逆基因表達(dá)分析 利用RNA prep Pure多糖多酚植物總RNA提取試劑盒(DP441,天根,中國)提取葡萄葉片總RNA,采用1%瓊脂糖凝膠電泳檢測(cè)RNA完整度,并利用核酸蛋白檢測(cè)儀檢測(cè)RNA濃度及純度。以提取的RNA為模板,參照Prime ScriptTMRT reagent Kit with gDNA Eraser(Perfect Real Time)試劑盒(TaKaRa,日本)操作說明反轉(zhuǎn)錄合成第一鏈cDNA。采用TB Green Premix Ex TagTM Ⅱ(Tli RNaseH Plus)試劑盒(TaKaRa,日本)和CFX96 Real-Time System熒光定量PCR儀(Bio-Rad,美國)進(jìn)行實(shí)時(shí)熒光定量PCR(qRT-PCR)。反應(yīng)體系共10 μL,其中含有TB Green Premix Ex Taq Ⅱ(Tli RNaseH Plus)(2×)5 μL,cDNA模板 1 μL,10 μmol·L-1上游和下游引物各0.5 μL,ddH2O 3 μL。反應(yīng)程序:95 ℃預(yù)變性30 s后,運(yùn)行40個(gè)循環(huán)的95 ℃變性5 s、56.8 ℃退火30 s;然后按照以下梯度采集溶解曲線:95 ℃保持10 s,降溫到65 ℃后開始以0.5 ℃每步升溫,并維持5 s采集熒光信號(hào),反應(yīng)至95 ℃結(jié)束。設(shè)3次生物學(xué)重復(fù)。
葡萄目的抗逆基因?yàn)闊峒さ鞍譎SP基因(VvHSP17.9、VvHSP22、VvHSP70、VvHSP90、VvHSP100、VvHSP101)、熱激轉(zhuǎn)錄因子HSF基因(VvHSFA1、VvHSFA2、VvHSFB1)和GLOS1,內(nèi)參基因?yàn)閂vGAPDH,使用Primer 5.0設(shè)計(jì)熒光定量PCR引物(表1),引物由北京擎科生物科技股份有限公司合成。采用2-△△CT法[24]計(jì)算基因的相對(duì)表達(dá)量,將高溫前V形架各目的基因的相對(duì)表達(dá)量定義為1,計(jì)算其他處理中基因的表達(dá)倍數(shù)。
1.3 數(shù)據(jù)處理
使用Microsoft Excel 2010對(duì)數(shù)據(jù)進(jìn)行初步處理,采用SPSS 19.0 軟件進(jìn)行方差分析,用鄧肯氏法進(jìn)行差異顯著性檢驗(yàn),顯著水平為α=0.05。使用https://www.chiplot.online/網(wǎng)站繪制相關(guān)性分析熱圖,使用SigmaPlot 14.0繪制折線圖及柱形圖。
2 結(jié)果與分析
2.1 夏季不同架形葡萄葉幕溫濕度比較
2.1.1 葉幕溫度 圖2反映了夏季(6—8月)不同架形葡萄葉幕每日溫度范圍及平均溫度。如圖2所示,夏季(6—8月)飛鳥形架和V形架葡萄葉幕極限溫度總體少于H形架。表2表明,6—8月飛鳥形架葉幕極溫差為21.23~25.53 ℃,V形架為23.40~26.60 ℃,H形架為28.40~29.40 ℃。6月V形架、飛鳥形架和H形架葉幕最高溫分別是41.40、39.03、47.00 ℃,V形架葉幕≥40 ℃的天數(shù)有2.67 d,H形架葉幕≥40 ℃的天數(shù)有6.33 d,其中有2 d最高溫突破45 ℃;7月V形架、飛鳥形架和H形架葉幕最高溫分別是43.90、41.77、46.43 ℃,≥40 ℃的天數(shù)V形架有11 d,飛鳥形架僅6.67 d,而H形架有19 d,其中有5 d最高溫突破45 ℃;8月不同架形葡萄葉幕溫度均突破45 ℃,V形架、飛鳥形架和H形架葉幕最高溫分別是46.50、45.03、48.87 ℃,≥40 ℃的天數(shù)V形架、飛鳥形架、H形架分別有19.33、16.33、22.67 d,其中≥45 ℃的天數(shù)分別有9.33、1.00、16.67 d。8月份飛鳥形架葉幕40 ℃以上的高溫比例較V形架降低了45.07%,較H形架降低了46.20%。就日平均溫度來看,飛鳥形架在高溫天氣出現(xiàn)的時(shí)候降溫效果較顯著,V形架次之,H形架葉幕溫度最高。
2.1.2 葉幕濕度 如圖3所示,6—8月,隨溫度升高,各架形葉幕濕度逐漸降低。飛鳥形架葉幕濕度最高,V形架次之,H形架最低,但波動(dòng)范圍相反,H形架葉幕濕度波動(dòng)大。表3表明,6—8月飛鳥形架葉幕濕度60%~80%所占比例為20.39%~26.37%,比V形架平均降低4.37%,比H形架平均增高17.32%,而6—8月飛鳥形架葉幕濕度>80%所占比例為38.82%~48.91%,比V形架平均增高8.89%,比H形架平均增高4.53%,即H形架葉幕濕度較低,V形架葉幕適宜葉片果實(shí)發(fā)育的濕度比例(60%~80%)較高,飛鳥形架葉幕高濕比例較高。
2.2 高溫對(duì)葡萄葉片解剖結(jié)構(gòu)的影響
高溫發(fā)生前及脅迫發(fā)生后均可明顯區(qū)分葡萄葉片上下表皮、柵欄組織和海綿組織(圖4)。高溫發(fā)生前,3種架形葡萄葉片柵欄組織細(xì)胞呈長柱形,排列整齊、緊密,海綿組織細(xì)胞呈不規(guī)則形,排列緊湊;在高溫脅迫發(fā)生15 d后,3種架形葡萄葉片厚度增加,柵欄組織細(xì)胞形狀和排列變得不規(guī)則,海綿組織空隙增多增大,排列疏松。表4表明,高溫發(fā)生前,3種架形葡萄葉片厚度及海綿組織厚度無顯著差異,但飛鳥形架和V形架葡萄葉片柵欄組織厚度顯著高于H形架;高溫脅迫發(fā)生后,V形架和H形架葡萄葉片厚度顯著增加,V形架增加了19.11%,H形架增加了29.16%,而飛鳥形架葉厚無顯著變化,其中H形架柵欄組織厚度和海綿組織厚度在高溫后顯著增加24.70%、42.50%,V形架海綿組織厚度顯著增加43.79%;V形架和飛鳥形架的柵/海比在高溫后顯著降低,分別降低了30.30%、29.14%,而H形架降低11.83%,但與高溫前無顯著差異。
2.3 高溫對(duì)葡萄葉片光合色素含量的影響
如圖5所示,高溫發(fā)生前3種架形葡萄葉片Chl a、Chl b、Car總體無顯著差異,且在高溫脅迫期間均呈先上升后下降的變化趨勢(shì),但達(dá)到最大值的時(shí)間不同,V形架、飛鳥形架Chl a和Chl b含量在脅迫6 d時(shí)升至最高值,而H形架在脅迫3 d時(shí)達(dá)到最大值,3種架形的Car含量均在脅迫3 d時(shí)達(dá)到最大值。整個(gè)試驗(yàn)期間,飛鳥形架葉綠素及類胡蘿卜素含量最高,V形架次之,H形架最低,其中飛鳥形架Chl a和Car含量與V形架無顯著差異,僅Chl b在脅迫6 d和脅迫9 d時(shí)顯著高于V形架,飛鳥形架各光合色素含量總體顯著高于H形架,而V形架和H形架各光合色素含量在脅迫中期有顯著差異,到脅迫15 d時(shí)則無顯著差異。就總光合色素而言,到脅迫6 d時(shí),3種架形差異最明顯,此時(shí)飛鳥形架總光合色素含量較V形架顯著提高6.74%,較H形架顯著提高49.87%,而后各架形之間的差異逐漸縮小。
2.4 高溫對(duì)葡萄葉片光合參數(shù)的影響
如圖6所示,3種架形葡萄葉片日均Pn、日均Gs、日均Tr和日均Ci變化規(guī)律一致,隨高溫脅迫時(shí)間的延長先上升后下降,除V形架Pn、Tr和Ci在脅迫6 d時(shí)達(dá)到最大值,其余均在脅迫3 d時(shí)達(dá)到峰值。整個(gè)試驗(yàn)期間,Pn總體表現(xiàn)為飛鳥形架>V形架>H形架,Gs、Tr和Ci則表現(xiàn)相反,為H形架>V形架>飛鳥形架,其中3種架形之間Pn的差異隨脅迫時(shí)間增加而逐漸增大,到脅迫15 d時(shí),飛鳥形架(Pn)較V形架顯著增加14.21%,較H形架顯著增加76.22%;3種架形的Gs、Tr和Ci在脅迫3d和脅迫6 d時(shí)差異較明顯,脅迫6 d時(shí),H形架的Gs、Tr和Ci分別比V形架提高21.46%、38.38%、1.56%,比飛鳥形架提高49.04%、81.18%、11.16%,而后差異逐漸縮小,到脅迫15 d時(shí),除H形架的Ci顯著高于V形架和飛鳥形架外,其余無顯著差異。
2.5 高溫對(duì)葡萄葉片葉綠素?zé)晒鈪?shù)的影響
如圖7所示,高溫前,3種架形各熒光參數(shù)值總體無顯著差異;在高溫脅迫期間,3種架形葡萄葉片各熒光參數(shù)變化規(guī)律大致相同。初始熒光(Fo)和非光化學(xué)猝滅系數(shù)(NPQ)呈逐漸上升趨勢(shì),到脅迫15 d時(shí),V形架、飛鳥形架和H形架的Fo分別上升了66.37%、39.80%、101.25%,NPQ分別上升了67.02%、55.16%、83.86%;最大熒光(Fm)和光化學(xué)猝滅系數(shù)(qP)呈先上升后下降趨勢(shì),F(xiàn)m和qP分別在脅迫3 d和脅迫6 d時(shí)達(dá)到最大值,而后快速降低,與高溫前相比,脅迫15 d后,V形架、飛鳥形架和H形架的Fm分別下降了1.51%、14.16%、8.06%,qP分別下降了34.16%、32.72%、55.82%;最大光化學(xué)效率(Fv/Fm)、潛在光化學(xué)效率(Fv/Fo)和實(shí)際光化學(xué)效率(ΦPSII)在脅迫前期值較平穩(wěn),F(xiàn)v/Fm和Fv/Fo在脅迫6 d時(shí)快速降低,ΦPSII在脅迫9 d時(shí)快速降低,到脅迫15 d時(shí),飛鳥形架的Fv/Fm(0.76)、Fv/Fo(3.33)和ΦPSII(0.37)最高,H形架的Fv/Fm(0.62)、Fv/Fo(1.78)和ΦPSII(0.19)最低;電子傳遞速率(ETR)在高溫前至脅迫6 d呈小幅降低再小幅上升的趨勢(shì),脅迫6 d后呈急劇下降趨勢(shì),與高溫前相比,脅迫15 d后,V形架、飛鳥形架和H形架分別降低42.04%、33.86%、65.92%。在高溫脅迫期間H形架的各熒光參數(shù)變化幅度較大,導(dǎo)致H形架的Fo和NPQ明顯高于V形架和飛鳥形架,其余熒光參數(shù)則明顯低于V形架和飛鳥形架;V形架除了NPQ明顯高于飛鳥形架外,其余熒光參數(shù)兩者無顯著差異。
2.6 高溫對(duì)葡萄葉片抗逆基因表達(dá)的影響
2.6.1 熱激蛋白HSP基因的表達(dá)分析 如圖8,3種架形葡萄葉片的VvHSP17.9和VvHSP90相對(duì)表達(dá)量呈上升趨勢(shì),其中VvHSP17.9在高溫脅迫6 d至脅迫15 d時(shí)表達(dá)量明顯上調(diào),此時(shí)飛鳥形架VvHSP17.9的表達(dá)量較高,H形架次之,V形架較低;脅迫期間V形架和H形架VvHSP90表達(dá)量僅略微上升,而飛鳥形架在脅迫15 d時(shí)顯著上調(diào)了VvHSP90的表達(dá)量。3種架形的VvHSP22、VvHSP70、VvHSP101表達(dá)量變化趨勢(shì)較為一致,呈先上升后下降,VvHSP70、VvHSP101表達(dá)量在脅迫3~6 d較高,而VvHSP22表達(dá)量在脅迫9~15 d時(shí)較高;在大部分采樣時(shí)間點(diǎn),飛鳥形架VvHSP22、VvHSP70和VvHSP101的表達(dá)量最高,其中V形架VvHSP22和VvHSP101表達(dá)量高于H形架,而VvHSP70表達(dá)量低于H形架。飛鳥形架和H形架的VvHSP100先上調(diào)后下降,分別在脅迫3 d和脅迫 6 d時(shí)達(dá)到峰值,而后表達(dá)量急劇下調(diào),V形架的VvHSP100在脅迫9 d后顯著上調(diào),并在脅迫15 d時(shí)達(dá)到最高值,總體而言V形架VvHSP100表達(dá)量高于飛鳥形架,而H形架表達(dá)量最低。
2.6.2 熱激轉(zhuǎn)錄因子HSF基因及GLOS1的表達(dá)分析 進(jìn)一步對(duì)葡萄葉片中3個(gè)重要的熱激轉(zhuǎn)錄因子基因(VvHSFA1、VvHSFA2、VvHSFB1)和GLOS1進(jìn)行表達(dá)分析,結(jié)果如圖9。隨高溫脅迫時(shí)間的延長,3種架形葡萄的VvHSFA1和GLOS1相對(duì)表達(dá)量總體呈上升趨勢(shì),而VvHSFA2、VvHSFB1呈先上升后降低趨勢(shì),VvHSFB1在脅迫3 d至脅迫9 d時(shí)表達(dá)量較高,而VvHSFA2在脅迫6 d至脅迫15 d時(shí)表達(dá)量較高。總體而言,飛鳥形架對(duì)上述基因表達(dá)量上調(diào)的促進(jìn)作用最顯著,V形架次之,H形架上述基因表達(dá)量相對(duì)較低,且H形架GLOS1在整個(gè)脅迫期間表達(dá)量均較低。
2.7 光合色素、光合熒光參數(shù)與抗逆基因間的相關(guān)性分析
選取3種架形葡萄夏季高溫發(fā)生前6 d及脅迫發(fā)生后3、6、9、15 d的共15組數(shù)據(jù),進(jìn)行葉片光合色素、光合熒光參數(shù)與抗逆基因表達(dá)量間的相關(guān)性分析。如圖10所示,在光合色素、光合參數(shù)和葉綠素?zé)晒鈪?shù)之間,Pn與3種光合色素(Chl a、Chl b、Car)、6種葉綠素?zé)晒鈪?shù)(Fm、Fv/Fm、Fv/Fo、ΦPSII、qP、ETR)之間均呈顯著或極顯著正相關(guān),但與Fo、NPQ之間呈顯著負(fù)相關(guān)。在10個(gè)抗逆基因中,VvHSP17.9、VvHSP90、VvHSFA1、GOLS1 4個(gè)抗逆基因與光合色素、光合參數(shù)和葉綠素?zé)晒鈪?shù)(除與Fo、NPQ之間呈極顯著正相關(guān))之間呈負(fù)相關(guān),特別是與Gs、Fv/Fm、Fv/Fo、ΦPSII、ETR之間呈顯著或極顯著負(fù)相關(guān);而VvHSP70、VvHSP101,VvHSFB1 3個(gè)抗逆基因與光合色素、光合參數(shù)和葉綠素?zé)晒鈪?shù)(除與Fo、NPQ之間呈負(fù)相關(guān))之間呈正相關(guān),特別是與Chl a、Chl b、Car、Pn、Gs、Ci、Fm、qP之間呈顯著或極顯著正相關(guān)。VvHSP22、VvHSP100、VvHSFA2與光合色素、光合參數(shù)和葉綠素?zé)晒鈪?shù)之間的相關(guān)總體不顯著。
3 討 論
前人研究發(fā)現(xiàn),在葡萄成熟期V形架降低溫度提高濕度效果優(yōu)于H形架[6],研究表明,在夏季高溫期間,飛鳥形架和V形架葉幕極限溫度出現(xiàn)的次數(shù)和程度明顯低于H形架,飛鳥形架葉幕濕度較高,V形架次之,H形架最低,與前人研究結(jié)果相似,表明高溫天氣下飛鳥形架和V形架葉幕的降溫保濕效果較好,可避免高溫干旱雙重脅迫的發(fā)生,其中飛鳥形架優(yōu)勢(shì)更為顯著。實(shí)際生產(chǎn)中,H形架葡萄由于結(jié)果部位較高且葉幕呈水平分布,其園內(nèi)通風(fēng)效果優(yōu)于飛鳥形架及V形架,而本研究中H形架葡萄葉幕溫度最高,其原因可能是H形架葡萄葉幕與棚頂距離較近,接受的光照度高,導(dǎo)致葉幕溫度升高較快;另外H形架葉幕透光性較強(qiáng),致使懸掛在新梢中部的溫濕度計(jì)易受陽光直射,最終導(dǎo)致H形架葉幕所測(cè)定的溫度較高。飛鳥形架葡萄枝條開張角度較大且主干較高,果園內(nèi)通風(fēng)透氣性優(yōu)于V形架葡萄,因此飛鳥形架葉幕溫度最低。
葉片的柵欄組織不僅可以使葉片含有較多葉綠素,還可以保護(hù)葉肉細(xì)胞免受灼傷[9,12]。已有研究表明,植物葉片柵欄組織厚度與耐熱性呈正相關(guān),海綿組織厚度與耐熱性呈負(fù)相關(guān)[28]。試驗(yàn)研究中,高溫前飛鳥形架和V形架葉片柵欄組織厚度顯著高于H形架,與前人在京蜜葡萄上的研究結(jié)果一致[29],說明飛鳥形架及V形架葡萄耐熱性高于H形架葡萄。高溫脅迫可改變植物葉肉細(xì)胞結(jié)構(gòu),使柵欄組織和海綿組織厚度增加,且耐熱性差的品種其變化幅度較大[12]。在本研究中,高溫脅迫15 d后,飛鳥形架葉片柵欄組織及海綿組織厚度變化不明顯,V形架葉片海綿組織顯著增加,H形架葉片柵欄組織及海綿組織厚度明顯增加,進(jìn)一步說明H形架葡萄耐熱性弱于飛鳥形架和V形架葡萄,其葉片受高溫傷害較嚴(yán)重。
高溫脅迫會(huì)抑制光合色素合成,同時(shí)脅迫產(chǎn)生的活性氧會(huì)加速葉綠素降解,導(dǎo)致葉片光合色素含量降低,光合速率降低[26]。試驗(yàn)研究發(fā)現(xiàn),3種架形葡萄葉片的Chl a、Chl b、Car、Chl含量及Pn、Gs、Tr、Ci隨高溫脅迫時(shí)間的延長呈先上升后降低的趨勢(shì),這與前人在多個(gè)葡萄品種[26,30]及灰?guī)r皺報(bào)春[31]中的研究結(jié)果一致,表明短時(shí)間的田間高溫會(huì)使葡萄產(chǎn)生一定的抵抗來應(yīng)對(duì)高溫脅迫,具體表現(xiàn)為葉片氣孔開度增大以促進(jìn)蒸騰散熱、降低葉溫,同時(shí)葉肉細(xì)胞內(nèi)CO2含量與光合色素含量增加,使葉片光合速率升高。但隨著高溫脅迫時(shí)間的延長,為避免葉片水分散失過多,葉片氣孔大量關(guān)閉,葉肉細(xì)胞內(nèi)Ci降低,同時(shí)葉綠素含量減少,導(dǎo)致Pn大幅降低[30];另外高溫下葉片衰老加速也將導(dǎo)致Pn降低[32]。高溫脅迫下,引起植物Pn下降的原因主要分為氣孔限制和非氣孔限制2種,其中氣孔限制因素強(qiáng)調(diào)葉片Gs降低,導(dǎo)致CO2供給不足從而限制葉片光合作用,具體表現(xiàn)為Gs、Ci、Pn同時(shí)降低;而非氣孔限制因素偏重高溫破壞光合機(jī)構(gòu)、抑制光合作用關(guān)鍵酶活性,進(jìn)而對(duì)光合作用產(chǎn)生影響,非氣孔限制因素引起的下降表現(xiàn)為Gs下降的同時(shí)Ci升高[30,33]。本研究結(jié)果表明,脅迫后期3種架形葡萄葉片Pn降低的同時(shí)Gs、Tr、Ci均顯著下降,說明Pn降低主要由氣孔限制因素導(dǎo)致,類似的研究結(jié)果在南豐蜜橘[9]和白樺[34]中也得到過證實(shí)。值得注意的是,筆者在本研究中通過相關(guān)性分析發(fā)現(xiàn),Pn與光合色素含量、光化學(xué)效率之間呈顯著正相關(guān),而與Gs、Tr、Ci之間無顯著相關(guān)性,說明光合色素含量降低及光合機(jī)構(gòu)受損等的非氣孔限制因素也導(dǎo)致了葡萄Pn降低,但具體機(jī)制有待進(jìn)一步研究。前人研究表明,夏季飛鳥形架[7]、V形架[29]葡萄葉片葉綠素含量、光合速率高于水平棚架。類似地,在本研究中,飛鳥形架葡萄葉片Chl、Car含量及Pn最高、V形架次之,H形架最低,且飛鳥形架葡萄葉片Chl a、Chl b達(dá)到最大值后下降時(shí)間晚于V形架和H形架,表明飛鳥形架葡萄耐熱能力較強(qiáng),在受到高溫脅迫時(shí)可維持較高水平的光合色素含量,使植株具有較強(qiáng)的光合能力。
葉綠素?zé)晒鈪?shù)中Fo可以反映PSⅡ反應(yīng)中心狀態(tài),F(xiàn)o增加則表明PSⅡ反應(yīng)中心失活[30]。在本研究中,隨著高溫脅迫時(shí)間增加,3種架形葡萄葉片F(xiàn)o逐漸上升,說明高溫下葡萄PSⅡ反應(yīng)中心逐漸失活。Fm與光合機(jī)構(gòu)中天線色素含量成正比[35];Fv/Fm和Fv/Fo是鑒定植物光合機(jī)構(gòu)是否受高溫傷害的重要指標(biāo),可衡量反應(yīng)中心的光化學(xué)效率[30];ΦPSII反映葉片在當(dāng)前生長環(huán)境中的實(shí)際光能轉(zhuǎn)換效率,qP反映PSⅡ天線色素吸收的光能用于光合作用的份額,NPQ反映植物耗散過剩光能為熱的能力,也就是光保護(hù)能力,ETR反映實(shí)際光照度下光合電子鏈電子傳遞速率[36]。在本研究中,脅迫前期3種架形葡萄葉片F(xiàn)m增大,表明天線色素含量增加,這與本文中脅迫前期3種架形葡萄葉片葉綠素含量增加的研究結(jié)果一致,此時(shí)葉片NPQ增加,而Fv/Fm、Fv/Fo、ΦPSII、ETR保持穩(wěn)定,表明脅迫前期3種架形葡萄葉片以熱耗散方式耗散多余光能來保護(hù)光合機(jī)構(gòu),維持葉片光能轉(zhuǎn)換效率的穩(wěn)定,此時(shí)葉片PSⅡ反應(yīng)中心失活或可逆,這與王虹[37]在紅葉桃中的研究結(jié)果一致。脅迫6 d后,3種架形葡萄葉片NPQ繼續(xù)升高,但Fm、Fv/Fm、Fv/Fo、ΦPSII、qP、ETR陸續(xù)降低,說明長時(shí)間自然高溫脅迫下葡萄葉片吸收的過量光能不能以熱能形式完全耗散,過度光能造成光合機(jī)構(gòu)中天線色素含量降低,光合電子傳遞速率減緩,此時(shí)3種架形葡萄葉片的光合機(jī)構(gòu)已經(jīng)受到高溫傷害,吸收的光能用于光合作用的份額減少,葉片光能轉(zhuǎn)換效率降低,這與竇飛飛等[30]、張睿佳等[38]的研究結(jié)果一致。就供試的3種葡萄架形而言,在相同高溫脅迫下,飛鳥形架和V形架葡萄葉片的Fm、Fv/Fm、Fv/Fo、ΦPSII、qP和ETR較H形架較高,F(xiàn)o、NPQ較低,與H形架差異顯著,而飛鳥形架和V形架差異不明顯,表明飛鳥形架和V形架葡萄葉片在高溫下PSⅡ反應(yīng)中心較為穩(wěn)定,耐熱性較強(qiáng)。
通過對(duì)3種架形葡萄葉片的6個(gè)HSP、3個(gè)HSF和GLOS1共10個(gè)基因檢測(cè),結(jié)果顯示高溫脅迫顯著上調(diào)了這些基因的表達(dá),說明VvHSP和VvHSF、GLOS1基因可以在短期內(nèi)迅速響應(yīng)以提高葡萄抗熱能力,這與前人在牡丹[39]、葡萄[26-27]上的研究結(jié)果一致。HSP70基因在轉(zhuǎn)基因植物中過表達(dá)可促進(jìn)植株耐熱性提高[40],HSP101蛋白在高溫下能迅速誘導(dǎo)啟動(dòng)圓錐南芥的光化學(xué)修復(fù),使圓錐南芥在高溫脅迫中仍具有較高的光化學(xué)效率[41]。筆者在本研究中通過相關(guān)性分析發(fā)現(xiàn),VvHSP70、VvHSP101,VvHSFB1 3個(gè)抗逆基因與Chl a、Chl b、Car、Pn、Gs、Ci、Fm、qP之間呈顯著正相關(guān),也表明VvHSP70、VvHSP101,VvHSFB1 3個(gè)抗逆基因與葡萄耐熱性呈正相關(guān),可增強(qiáng)高溫下葡萄光合系統(tǒng)的穩(wěn)定性。VvHSP17.9、VvHSP90、VvHSFA1、GOLS1 4個(gè)抗逆基因與Fv/Fm、Fv/Fo、ΦPSII、ETR之間呈顯著負(fù)相關(guān),主要原因是脅迫后期上述4個(gè)基因的表達(dá)量仍在持續(xù)增加,但葡萄PSⅡ反應(yīng)受損程度逐漸加深,說明葡萄耐熱性受多種基因共同調(diào)控,VvHSP17.9、VvHSP90、VvHSFA1、GOLS1 4個(gè)抗逆基因并不起主導(dǎo)作用。此外,筆者在本研究中還發(fā)現(xiàn)VvHSP22、VvHSP100、VvHSFA2與光合色素、光合參數(shù)和葉綠素?zé)晒鈪?shù)之間的相關(guān)性總體不顯著,但與VvHSP90、GOLS1之間存在顯著正相關(guān),VvHSP22、VvHSP100、VvHSFA2可能通過其他抗逆基因間接調(diào)控葡萄的耐熱性。總體而言,高溫脅迫下飛鳥形架葡萄對(duì)上述除VvHSP100外的9個(gè)基因表達(dá)量的上調(diào)促進(jìn)作用最顯著,其中V形架葡萄VvHSP22、VvHSP101和VvHSFA1、VvHSFA2、VvHSFB1、GLOS1基因表達(dá)量明顯高于H形架,而VvHSP17.9和VvHSP70表達(dá)量明顯低于H形架,表明飛鳥形架葡萄抗高溫脅迫能力較強(qiáng),更能適應(yīng)高溫環(huán)境,H形架葡萄耐熱性較差。
4 結(jié) 論
通過葉片組織解剖結(jié)構(gòu)、光合熒光參數(shù)及熱激基因表達(dá)量的觀測(cè),夏季連續(xù)自然高溫(>38 ℃)脅迫下,V形架、飛鳥形架和H形架陽光玫瑰葡萄葉片厚度增加,PSⅡ反應(yīng)中心受損,光合色素含量和光合速率隨高溫脅迫時(shí)間延長先上升后降低,氣孔閉合是引起葡萄光合速率最終下降的主要因素。飛鳥形架陽光玫瑰葡萄葉幕溫度較低、葉肉組織緊實(shí)、光合色素含量高、熱激基因(VvHSP、VvHSP、GLOS1)表達(dá)量更高、PSⅡ反應(yīng)中心較為穩(wěn)定是其耐熱性較強(qiáng)的主要原因。
參考文獻(xiàn) References:
[1] 宋獻(xiàn)策,王世平,顧巧英,蔡紅玲,張偉達(dá),曹偉婷. 陽光玫瑰葡萄在上海的引種表現(xiàn)及優(yōu)質(zhì)栽培技術(shù)[J]. 中外葡萄與葡萄酒,2015(4):48-51.
SONG Xiance,WANG Shiping,GU Qiaoying,CAI Hongling,ZHANG Weida,CAO Weiting. Introduction performance and high-quality cultivation techniques of Shine Muscat grape in Shanghai[J]. Sino-Overseas Grapevine amp; Wine,2015(4):48-51.
[2] 王榮,雷舒敏,杜肇軒,岳領(lǐng)齊,張雪楓,楊國順,王美軍,譚君,許延帥. 南方六個(gè)地區(qū)不同成熟期‘陽光玫瑰’葡萄果實(shí)品質(zhì)評(píng)價(jià)[J/OL]. 分子植物育種,2024:1-15(2024-05-31)[2024-07-11]. https://kns.cnki.net/kcms/detail/46.1068.S.20240530.1707.006.html.
WANG Rong,LEI Shumin,DU Zhaoxuan,YUE Lingqi,ZHANG Xuefeng,YANG Guoshun,WANG Meijun,TAN Jun,XU Yan-shuai. ‘Shine Muscat’ grape fruit quality evaluation in different mature periods of six areas in the South of China[J/OL]. Molecular Plant Breeding,2024:1-15(2024-05-31)[2024-07-11]. https://kns.cnki.net/kcms/detail/46.1068.S.20240530.1707.006.html.
[3] PAPALEXIOU S M,AGHAKOUCHAK A,TRENBERTH K E,F(xiàn)OUFOULA-GEORGIOU E. Global,regional,and megacity trends in the highest temperature of the year:Diagnostics and evidence for accelerating trends[J]. Earth’s Future,2018,6(1):71-79.
[4] 賈子康. 中國南方夏季極端高溫和地表氣溫的多時(shí)間尺度變化及預(yù)報(bào)研究[D]. 蘭州:蘭州大學(xué),2023.
JIA Zikang. Multi-timescale variations and forecasts of summer extreme high-temperature and surface air temperature in Southern China[D]. Lanzhou:Lanzhou University,2023.
[5] 江莉,牛先前,王鵬博,陳婷,劉鑫銘,謝倩,陳清西,雷龑. 開窗對(duì)設(shè)施大棚葡萄植株光合特性和果實(shí)品質(zhì)的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2023,32(12):1933-1942.
JIANG Li,NIU Xianqian,WANG Pengbo,CHEN Ting,LIU Xinming,XIE Qian,CHEN Qingxi,LEI Yan. Effects of windows opening on photosynthetic characteristics and fruit quality of grape plants in greenhouses[J]. Acta Agriculturae Boreali-occidentalis Sinica,2023,32(12):1933-1942.
[6] 郭偉琛. 不同葡萄品種果實(shí)質(zhì)地評(píng)價(jià)及‘陽光玫瑰’兩種不同架型比較研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2023.
GUO Weichen. Evaluation of fruit texture of different grape varieties and comparative study on two different trellis system of ‘Shine-Muscat’[D]. Yangling:Northwest A amp; F University,2023.
[7] 張潔. 棚架不同葉幕類型對(duì)葡萄冠層結(jié)構(gòu)、光截獲及光合的數(shù)字化模擬研究[D]. 石河子:石河子大學(xué),2020.
ZHANG Jie. Impacts of canopy shapes on canopy structure,light interception and photosynthetic capacities for pergola trellis grapevines based on digitizing and modelling[D]. Shihezi:Shihezi University,2020.
[8] 鄭婷,吳江,劉凡啟,許瀛之,李生保,房經(jīng)貴. 葡萄種植架式及其應(yīng)用[J]. 中外葡萄與葡萄酒,2021(2):40-45.
ZHENG Ting,WU Jiang,LIU Fanqi,XU Yingzhi,LI Shengbao,F(xiàn)ANG Jinggui. Introduction and application of training system on grapevine[J]. Sino-Overseas Grapevine amp; Wine,2021(2):40-45.
[9] 徐超,楊再強(qiáng),王雨亭,劉布春,楊惠棟,湯雨晴,胡新龍,胡鐘東. 南豐蜜橘對(duì)高溫?zé)岷Φ纳眄憫?yīng)及耐熱性評(píng)價(jià)模型構(gòu)建[J]. 果樹學(xué)報(bào),2023,40(12):2638-2651.
XU Chao,YANG Zaiqiang,WANG Yuting,LIU Buchun,YANG Huidong,TANG Yuqing,HU Xinlong,HU Zhongdong. Physiological response to high temperature and heat tolerance evaluation of different lines in Nanfeng tangerine[J]. Journal of Fruit Science,2023,40(12):2638-2651.
[10] GU L H. Comment on “Climate and management contributions to recent trends in U. S. agricultural yields”[J]. Science,2003,300(5625):1505.
[11] HAVAUX M,TARDY F. Temperature-dependent adjustment of the thermal stability of photosystem II. In vivo:Possible involvement of xanthophyll-cycle pigments[J]. Planta,1996,198(3):324-333.
[12] 查倩,奚曉軍,和雅妮,蔣愛麗. 田間高溫對(duì)不同葡萄葉片組織結(jié)構(gòu)的影響[J]. 中國農(nóng)學(xué)通報(bào),2019,35(13):74-77.
ZHA Qian,XI Xiaojun,HE Yani,JIANG Aili. High temperature in field:Effect on the leaf tissue structure of grape varieties[J]. Chinese Agricultural Science Bulletin,2019,35(13):74-77.
[13] 孟祥麗. 五種不同甜櫻桃砧木旱澇和高溫脅迫適應(yīng)性評(píng)價(jià)[D]. 金華:浙江師范大學(xué),2011.
MENG Xiangli. Comprehensive evaluation of the tolerance of sweet cherry drafted on five different rootstocks under drought,waterlogging and high-temperature stress by subordinate function values analysis[D]. Jinhua:Zhejiang Normal University,2011.
[14] 賀安娜,林文強(qiáng),姚奕,譚曉利. 不同溫度處理對(duì)虎耳草葉片氣體交換及葉肉結(jié)構(gòu)的影響[J]. 植物研究,2012,32(4):410-414.
HE Anna,LIN Wenqiang,YAO Yi,TAN Xiaoli. Gas exchange and leaf structure of Saxifraga stolonifera Curt. under different temperatures[J]. Bulletin of Botanical Research,2012,32(4):410-414.
[15] XU Y,ZHAN C Y,HUANG B R. Heat shock proteins in association with heat tolerance in grasses[J]. International Journal of Proteomics,2011:529648.
[16] 王濤,田雪瑤,謝寅峰,張往祥. 植物耐熱性研究進(jìn)展[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2013,28(5):719-726.
WANG Tao,TIAN Xueyao,XIE Yinfeng,ZHANG Wangxiang. Research advance on heat-stress tolerance in plants[J]. Journal of Yunnan Agricultural University (Natural Science),2013,28(5):719-726.
[17] HELM K W,LAFAYETTE P R,NAGAO R T,KEY J L,VIERLING E. Localization of small heat shock proteins to the higher plant endomembrane system[J]. Molecular and Cellular Biology,1993,13(1):238-247.
[18] SULEMAN P,REDHA A,AFZAL M,AL-HASAN R. Temperature-induced changes of malondialdehyde,heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius (Engl.)[J]. Acta Physiologiae Plantarum,2013,35(4):1223-1231.
[19] 劉冬峰. 砂梨對(duì)高溫脅迫的響應(yīng)及耐熱機(jī)理研究[D]. 杭州:浙江大學(xué),2014.
LIU Dongfeng. Studies on the pesponse of sand pear to high-temperature and heat-tolerance mechanism[D]. Hangzhou:Zhejiang University,2014.
[20] OGAWA D,YAMAGUCHI K,NISHIUCHI T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth[J]. Journal of Experimental Botany,2007,58(12):3373-3383.
[21] PILLET J,EGERT A,PIERI P,LECOURIEUX F,KAPPEL C,CHARON J,GOMèS E,KELLER F,DELROT S,LECOURIEUX D. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries[J]. Plant amp; Cell Physiology,2012,53(10):1776-1792.
[22] 范志霞,陳越悅,付荷玲. 成都地區(qū)10種園林灌木葉片結(jié)構(gòu)與抗旱性關(guān)系研究[J]. 植物科學(xué)學(xué)報(bào),2019,37(1):70-78.
FAN Zhixia,CHEN Yueyue,F(xiàn)U Heling. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Science Journal,2019,37(1):70-78.
[23] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京:高等教育出版社,2000.
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000.
[24] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔcT Method[J]. Methods,2001,25(4):402-408.
[25] 楊婭倩. 外源亞精胺對(duì)高溫脅迫下葡萄幼苗生理生化特性的影響[D]. 泰安:山東農(nóng)業(yè)大學(xué),2020.
YANG Yaqian. Effects of exogenous spermidine on physiological and biochemical characteristics of grape seedlings under high temperature stress[D]. Taian:Shandong Agricultural University,2020.
[26] 肖芳. 高溫脅迫對(duì)苗期紅提葡萄生理及基因表達(dá)特性的影響[D]. 南京:南京信息工程大學(xué),2018.
XIAO Fang. Effects of high temperature stress on physiological and gene expression characteristics of grapevine (Vitis vinifera L. Hongti) during seedling stage[D]. Nanjing:Nanjing University of Information Science amp; Technology,2018.
[27] 查倩,奚曉軍,蔣愛麗,田益華. 高溫脅迫對(duì)葡萄高溫相關(guān)基因和蛋白表達(dá)的影響[J]. 中國農(nóng)業(yè)科學(xué),2017,50(9):1674-1683.
ZHA Qian,XI Xiaojun,JIANG Aili,TIAN Yihua. Influence of heat stress on the expression of related genes and proteins in grapevines[J]. Scientia Agricultura Sinica,2017,50(9):1674-1683.
[28] 申惠翡,趙冰,徐靜靜. 15個(gè)杜鵑花品種葉片解剖結(jié)構(gòu)與植株耐熱性的關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(12):3895-3904.
SHEN Huifei,ZHAO Bing,XU Jingjing. Relationship between leaf anatomical structure and heat resistance of 15 Rhododendron cultivars[J]. Chinese Journal of Applied Ecology,2016,27(12):3895-3904.
[29] 史祥賓,劉鳳之,程存剛,王孝娣,王寶亮,鄭曉翠,王海波. 不同葉幕形對(duì)設(shè)施葡萄葉幕微環(huán)境、葉片質(zhì)量及果實(shí)品質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(12):3730-3736.
SHI Xiangbin,LIU Fengzhi,CHENG Cungang,WANG Xiaodi,WANG Baoliang,ZHENG Xiaocui,WANG Haibo. Effects of canopy shapes of grape on canopy microenvironment,leaf and fruit quality in greenhouse[J]. Chinese Journal of Applied Ecology,2015,26(12):3730-3736.
[30] 竇飛飛,張利鵬,王永康,于坤,劉懷鋒. 高溫脅迫對(duì)不同葡萄品種光合作用和基因表達(dá)的影響[J]. 果樹學(xué)報(bào),2021,38(6):871-883.
DOU Feifei,ZHANG Lipeng,WANG Yongkang,YU Kun,LIU Huaifeng. Effects of high temperature stress on photosynthesis and gene expression of different grape cultivars[J]. Journal of Fruit Science,2021,38(6):871-883.
[31] 張路,張啟翔. 高溫脅迫對(duì)灰?guī)r皺葉報(bào)春生理指標(biāo)的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào),2011,24(5):1728-1732.
ZHANG Lu,ZHANG Qixiang. Effects of high temperature stress on physiological indicators of Primula forrestii[J]. Southwest China Journal of Agricultural Sciences,2011,24(5):1728-1732.
[32] 雷虎,江曉東,張建取. 高溫高濕環(huán)境下調(diào)虧灌溉對(duì)番茄葉片光合和衰老特性的影響[J]. 中國瓜菜,2023,36(3):58-63.
LEI Hu,JIANG Xiaodong,ZHANG Jianqu. Effects of regulated deficit irrigation on photosynthetic and senescence characteristics of tomato leaves under high temperature and high relative humidity environment in summer[J]. China Cucurbits and Vegetables,2023,36(3):58-63.
[33] 黃顯雅,陳格,黃永才,桂杰,黃誠梅,鞠瑩,盛靜文,蔣萍,楊柳. 持續(xù)高溫條件對(duì)4個(gè)百香果品種開花坐果習(xí)性及光合的影響[J/OL]. 果樹學(xué)報(bào),2024:1-13(2024-05-16)[2024-07-11]. https://doi.org/10.13925/j.cnki.gsxb.20240144.
HUANG Xianya,CHEN Ge,HUANG Yongcai,GUI Jie,HUANG Chengmei,JU Ying,SHENG Jingwen,JIANG Ping,YANG Liu. Effects of continuous high-temperature on flowering and fruit-setting habits and photosynthesis of four passion fruit varieties[J/OL]. Journal of Fruit Science,2024:1-13(2024-05-16)[2024-07-11]. https://doi.org/10.13925/j.cnki.gsxb.20240144.
[34] 胡榮云. 沈陽地區(qū)高溫干旱和強(qiáng)光脅迫條件下白樺光合生理研究[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2019.
HU Rongyun. Photosynthetic physiology of Betula platyphylla under high temperature,drought and high light stress in Shenyang area[D]. Shenyang:Shenyang Agricultural University,2019.
[35] CHEN L S,LI P M,CHENG L L. Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the Sun-exposed peel of apple[J]. Planta,2008,228(5):745-756.
[36] 曾寶珍,成永娟,車?yán)蚶颍瑮罹瓴R世雄,梁國平,吳志國,趙毅,毛娟. 納米零價(jià)鐵對(duì)武威產(chǎn)區(qū)黑比諾葡萄新梢和葉片生長及光合特性的影響[J]. 果樹學(xué)報(bào),2024,41(3):481-493.
ZENG Baozhen,CHENG Yongjuan,CHE Lili,YANG Juanbo,LU Shixiong,LIANG Guoping,WU Zhiguo,ZHAO Yi,MAO Juan. Effects of nano zero-valent iron on the growth and photosynthetic characteristics of the new shoots and leaves of Pinot Noir in Wuwei production area[J]. Journal of Fruit Science,2024,41(3):481-493.
[37] 王虹. 夏秋季節(jié)干旱脅迫對(duì)紅葉桃光合特性及相關(guān)生理指標(biāo)的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2008.
WANG Hong. Study on the photosynthesis characteristics and relative physiological index of red-leaf peach under drought stress in summer and autumn[D]. Nanjing:Nanjing Agricultural University,2008.
[38] 張睿佳,李瑛,虞秀明,婁玉穗,許文平,張才喜,趙麗萍,王世平. 高溫脅迫與外源油菜素內(nèi)酯對(duì)‘巨峰’葡萄葉片光合生理和果實(shí)品質(zhì)的影響[J]. 果樹學(xué)報(bào),2015,32(4):590-596.
ZHANG Ruijia,LI Ying,YU Xiuming,LOU Yusui,XU Wenping,ZHANG Caixi,ZHAO Liping,WANG Shiping. Effects of heat stress and exogenous brassinolide on photosynthesis of leaves and berry quality of ‘Kyoho’ grapevine[J]. Journal of Fruit Science,2015,32(4):590-596.
[39] 郝力慧,董彬,朱紹華,馬進(jìn). 牡丹響應(yīng)高溫脅迫的轉(zhuǎn)錄組分析及PsHSP基因表達(dá)[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2021,38(4):802-811.
HAO Lihui,DONG Bin,ZHU Shaohua,MA Jin. Transcriptome analysis and PsHSP gene expression of Paeonia suffruticosa in response to high temperature stress[J]. Journal of Zhejiang A amp; F University,2021,38(4):802-811.
[40] SAKUMA Y,MARUYAMA K,QIN F,OSAKABE Y,SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(49):18822-18827.
[41] 唐婷,鄭國偉,李唯奇. 高山植物圓錐南芥的光合系統(tǒng)耐熱性及其修復(fù)機(jī)制[J]. 植物分類與資源學(xué)報(bào),2015,37(1):46-54.
TANG Ting,ZHENG Guowei,LI Weiqi. The thermotolerance and repair mechanism of photosystem in alpine plant Arabis paniculata (Cruciferae)[J]. Plant Diversity,2015,37(1):46-54.