999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基礎激勵下磁懸浮轉子振動響應研究

2024-12-31 00:00:00張越周瑾沈權張一博
振動工程學報 2024年8期

摘要: 應用于移動載體上的磁懸浮轉子會受到基礎運動的激勵作用產生振動,甚至會造成轉、定子碰摩與系統失穩。為了探究基礎激勵下磁懸浮轉子的振動響應,進行了數值仿真和試驗驗證。考慮磁懸浮軸承的閉環控制,建立了基礎激勵下的磁懸浮轉子動力學模型,基礎激勵對轉子的作用以附加廣義力形式引入轉子運動微分方程。通過數值仿真分析了基礎簡諧激勵幅值和頻率、基礎沖擊激勵加速度與脈寬、磁懸浮軸承控制參數對轉子振動響應的影響。進行了基礎激勵試驗,試驗結果與仿真結果吻合,驗證了基礎激勵下磁懸浮轉子模型的準確性。結果表明,轉子簡諧響應幅值與基礎簡諧激勵頻率的平方和激勵幅值成正比,轉子沖擊響應峰值與基礎沖擊激勵的加速度成正比,適當增大磁懸浮軸承控制器的比例系數和微分系數可以抑制基礎激勵引起的轉子振動。

關鍵詞: 磁懸浮轉子;"基礎激勵;"振動響應;"試驗研究

中圖分類號: O347.6;"TH133.3 """"文獻標志碼: A """文章編號: 1004-4523(2024)08-1281-09

DOI:10.16385/j.cnki.issn.1004-4523.2024.08.002

引""言

主動磁懸浮軸承由于無摩擦、轉速高、可主動控制等優點,在工業中得到了越來越多的應用。當磁懸浮軸承應用于車用飛輪1、衛星/空間站設備2、船用推進器3、多電航空發動機4中時,不可避免地會受到移動載體帶來的基礎運動激勵。磁懸浮軸承相較于傳統機械軸承剛度和承載力較低,當基礎運動較為激烈時,會使轉子與磁懸浮軸承定子或保護軸承發生碰摩,引發失穩,所以有必要對基礎激勵下的磁懸浮轉子振動響應進行預測。

對于基礎運動下滾動和滑動軸承等傳統機械軸承支承轉子的建模和動力學分析,已經有了很多研究,可以為磁懸浮轉子提供一些參考。Dechemin等5和Driot等6通過Rayleigh?Ritz法研究了一個簡單轉子系統受到基礎轉動激勵時的穩定性和軸心軌跡。Dakel等7通過穩定性圖、坎貝爾圖、穩態響應和軸心軌跡分析了轉子受到基礎轉動、平動和不平衡力共同作用時的動力學行為。Han等8分析了柔性轉子?軸承系統在基礎周期角運動下的參數不穩定問題,討論了轉速、基礎運動幅值等參數對不穩定區域的影響。Chen等9以航空發動機轉子系統為研究對象對飛機做俯仰、滾轉、偏航等動作時產生的基礎激勵進行建模并作為附加剛度、阻尼矩陣引入轉子模型中進行分析,結果表明不同機動飛行對轉子的穩定性、臨界轉速、振幅大小都會產生影響。

對于磁懸浮軸承支承的轉子,Zhang10建立了考慮基礎垂向運動的五自由度剛性轉子耦合模型,但是沒有進一步分析基礎運動對轉子振動響應的影響。Xu等11基于雙框架系統模型,開發了一種同時考慮基礎平動和轉動的磁懸浮剛性轉子模型,并仿真分析了激勵幅值和脈沖寬度對轉子響應的影響,但是沒有進行試驗驗證。Kasarda等12設計了一個安裝在振動臺上的單自由度磁懸浮軸承,研究不同頻率和幅值的基礎正弦激勵下磁懸浮軸承的支承能力和系統固有頻率,測試結果表明基礎正弦激勵下磁懸浮軸承的剛度、阻尼水平限制了其工作性能。Das等13?14為了抑制滾動軸承支承的車載柔性轉子受基礎運動引起的橫向振動,將一個類似磁懸浮軸承的電磁作動器安裝在轉子中間的適當位置,在建模時將電磁力作為轉子系統外部附加廣義力考慮,數值模擬表明磁懸浮軸承有效降低了轉子振動并提高了穩定性。祝長生15通過試驗探究了簡諧激勵對磁懸浮轉子系統動態特性的影響,結果表明磁懸浮軸承控制器的設計需要考慮基礎激勵的影響。楊紅進等16通過ADAMS和MATLAB的聯合仿真分析了基礎加速、減速、轉彎、爬坡,以及由于路面不平引起的基礎縱向、橫向、俯仰運動對高速磁懸浮飛輪轉子系統動態性能的影響。吳妙妮等17建立了基礎運動下磁懸浮轉子安裝在移動載體的任意位置和任意軸向方向的動力學模型,飛機做爬升、俯沖、盤旋、橫滾等運動時,安裝位置只會影響轉子受到附加外力的大小,而軸向方向還會影響轉子系統本身的剛度、阻尼矩陣。張鵬等18建立了機動飛行條件下磁懸浮軸承剛性轉子系統的動力學模型,利用廣義根軌跡法分析了機動參數對轉子系統穩定性的影響。結果表明,采用PID控制的磁懸浮轉子可以通過調節電流來消除穩態機動載荷的影響。

盡管上述文獻已經分析了基礎激勵下磁懸浮轉子的建模方法和動力學響應,但鮮有通過基礎激勵試驗進行模型驗證的相關工作。此外,對于基礎激勵參數以及磁懸浮軸承控制參數對轉子振動響應的影響規律討論較少。

本文建立了基礎激勵下磁懸浮轉子的模型,進行了基礎簡諧和沖擊激勵下磁懸浮轉子的振動響應數值仿真,并將試驗結果與仿真結果進行對比,驗證了磁懸浮轉子模型的準確性,探究了基礎簡諧激勵的頻率和幅值、基礎沖擊激勵的加速度和脈寬、磁懸浮軸承控制參數對磁懸浮轉子振動響應的影響規律。

1 基礎激勵下磁懸浮轉子建模

1.1 磁懸浮軸承-轉子系統試驗臺

磁懸浮軸承?轉子系統試驗臺如圖1所示,試驗臺主要由磁懸浮軸承、轉子、電機、電渦流位移傳感器、保護軸承和基座等組成。轉子重2.4 kg,由兩端的徑向和軸向磁懸浮軸承實現五自由度懸浮,由布置在轉子中間的感應電機驅動轉子旋轉,使用電渦流位移傳感器實時檢測轉子的位置,轉子兩側裝有保護軸承,用于防止轉子失穩跌落時與磁懸浮軸承發生碰摩。磁懸浮軸承定子與基礎固連,使用振動臺對基礎施加激勵。

磁懸浮軸承的工作原理是:電渦流位移傳感器檢測轉子的位移,并將位移信號以電壓信號形式輸入控制器,控制器經過計算得到控制信號,以控制電壓形式傳遞給功率放大器,功率放大器將控制電壓轉化成線圈控制電流,由磁懸浮軸承線圈生成可控電磁力,使轉子懸浮在磁懸浮軸承中心。試驗臺中磁懸浮軸承為八磁極C型結構,傾斜45°布置,以提高磁懸浮軸承的承載能力,充分發揮磁懸浮軸承的性能。試驗臺中使用的徑向磁懸浮軸承的結構參數如表1所示。

22.5

1.2 基礎激勵下的磁懸浮轉子模型

由于轉子工作轉速遠低于彎曲臨界轉速,可以把轉子視為剛體進行建模。磁懸浮軸承的電磁力具備剛度阻尼的特性,轉子系統可以等效為一個質量?剛度?阻尼系統,如圖2所示。此時運動微分方程可以寫為:

該式表明在基礎平動激勵下,轉子相對于基礎的運動可以等效成一個單自由度由質量?剛度?阻尼組成的強迫振動系統,而強迫振動激勵取決于基礎振動加速度,等效后模型如圖3所示。

同時需要注意的是,當基礎垂向振動時,產生的等效力由磁懸浮軸承w,v方向的兩對電磁鐵共同承擔,磁懸浮軸承的結構如圖4所示。

式中""轉子質心廣義坐標qc=w v α"βTwv分別為轉子質心平動的位移,αβ分別是轉子繞質心轉動的角度;Ω為轉子轉速;M為質量矩陣;G為轉子陀螺力矩矩陣;Fu為轉子受到的不平衡力;Fb為基礎激勵對轉子的附加廣義力;Famb為磁懸浮軸承對轉子的電磁力;B為電磁力轉換矩陣。各矩陣如下所示:

當帶寬足夠時,功率放大器和位移傳感器環節可以簡化為比例增益kaks,那么當磁懸浮軸承控制器采用PID控制時,控制電流可以表示為:

選取左磁懸浮軸承w方向進行仿真和試驗研究,同時,不平衡力與基礎激勵是線性疊加的,所以在接下來的仿真和試驗中,轉子只靜態懸浮而不旋轉。轉子結構參數和磁懸浮軸承控制系統參數如表2和3所示。

2 基礎激勵下磁懸浮轉子振動響應仿真研究

2.1 基礎簡諧激勵

設基礎簡諧激勵的形式為u=Asin(ωt+φ),其中A為激勵幅值,ω為激勵頻率,φ為初始相位。對應的等效基礎外力為-mAω2sin(ωt+φ),由此可知影響轉子振動位移響應的基礎簡諧激勵參數主要有兩個,分別為激勵幅值A與激勵頻率ω。

圖6為固定基礎簡諧激勵頻率為10 Hz,激勵幅值分別為1,2,3 mm時的磁懸浮轉子振動響應,仿真時間為1 s。從圖6中可以看出,基礎簡諧激勵下,磁懸浮轉子振動位移呈現良好的正弦性,同時間接說明等效外力推導的正確性,從轉子振動位移幅值可以看出,轉子振動隨著基礎激勵振動幅值的增大而增大,近似呈線性增加關系,這是由于基礎等效外力與激勵幅值呈線性關系,同時磁懸浮軸承工作在線性區,轉子振動幅值也近似呈線性關系。

圖7為固定基礎簡諧激勵幅值為2 mm,激勵頻率分別為5,10,15 Hz時的磁懸浮轉子振動響應。從圖7中可以看出,磁懸浮轉子振動幅值隨著基礎激勵頻率的增加而增加,但不呈線性關系。從等效力公式中也可以看出,基礎激勵頻率ω線性增大,等效外力呈二次方增加,振動位移響應也近似呈二次關系。

磁懸浮軸承具有主動可控的優點,可以進行剛度和阻尼的主動調節。對于PID控制的磁懸浮軸承來說,可以調節的控制參數有比例、積分、微分系數,其中,積分環節用來消除懸浮穩態誤差,主要作用于靜態載荷,對于基礎簡諧激勵下磁懸浮轉子的影響不大;比例系數kP主要影響磁懸浮軸承的剛度;微分系數kD主要影響磁懸浮軸承的阻尼。接下來分析比例系數和微分系數的改變對基礎簡諧激勵下磁懸浮轉子振動響應的影響,需要注意的是,比例和微分系數通常需要一起調節以滿足系統性能和穩定性的要求,文中單獨調節某一參數只是為了探究影響規律?;A簡諧激勵設置為頻率10 Hz,幅值2 mm。

圖8為比例系數分別為1.8,2.2和2.6時的磁懸浮轉子振動響應對比。從圖中可以看出,隨著kP的增大,轉子振動幅值逐漸減小,這是因為增大kP可以提高磁懸浮軸承的剛度,有效抑制基礎簡諧激勵引起的轉子振動。

圖9為微分系數分別為0.0008,0.0015和0.002時的磁懸浮轉子振動響應對比。從圖中可以看出,對于10 Hz的基礎激勵,kD的變化對磁懸浮轉子振動響應幾乎沒有影響。這是因為控制器微分環節的作用是根據轉子實際位置與設定位置之間誤差的變化率控制輸出,在基礎激勵頻率比較低時,微分環節產生的作用遠小于比例環節的作用,所以改變磁懸浮軸承微分系數對轉子振動的影響很小。為了分析簡諧激勵頻率達到多少時可以通過增加微分系數抑制轉子振動,在仿真模型中施加固定加速度1g、頻率為1~200 Hz的掃頻信號,微分系數分別為0.0015和0.002時磁懸浮轉子的振動響應如圖10所示,激勵頻率高于50 Hz時,增大微分系數對減小轉子振動的效果明顯。

綜上所述,對于頻率較低的基礎激勵,可以通過適當增大比例系數kP的方法進行振動抑制。

2.2 基礎沖擊激勵

磁懸浮轉子受到的基礎沖擊是持續一段時間的瞬時激勵,常用半正弦沖擊進行表征,基礎半正弦沖擊激勵的形式為:

式中""A為沖擊加速度幅值,通常用重力加速度g進行衡量;T為基礎沖擊激勵的脈寬;t0為沖擊的起始時間。

圖11為固定沖擊加速度幅值為1g,沖擊脈寬分別為2,5,8和11 ms時的磁懸浮轉子振動響應。當沖擊加速度幅值不變時,沖擊脈寬越大意味著沖擊能量輸入越高,沖擊激勵作用越強,轉子振動響應隨著基礎沖擊脈寬的增大而增大。

圖12為沖擊脈寬為5 ms,沖擊加速度幅值分別為1g,1.5g,2g,2.5g時的磁懸浮轉子振動響應。從圖中可以看出,當沖擊脈寬不變時,轉子響應振蕩周期不變,幅值隨著沖擊加速度幅值的變化而線性變化。

接下來討論磁懸浮軸承比例系數與微分系數對基礎沖擊激勵作用下磁懸浮轉子振動響應的影響。設置基礎半正弦沖擊激勵的加速度幅值為1.5g,脈寬為5 ms。圖13為基礎沖擊激勵下比例系數分別為1.8,2.2,2.6時的磁懸浮轉子振動響應對比。kP的增大可以降低轉子振動響應峰值,但是轉子振動的振蕩時間幾乎沒有變化。

圖14為基礎沖擊激勵下微分系數分別為0.0008,0.0015,0.002時的磁懸浮轉子振動響應對比??梢钥闯觯?em>kD的增大也可以降低轉子振幅,與kP的影響不同的是,正向和反向振動位移都得到了抑制。在較低的微分系數下,磁懸浮轉子的振蕩時間較長??刂破鲄抵?,微分系數對基礎沖擊激勵響應的影響更明顯,但微分系數也不能過大,否則會放大系統中的高頻噪聲,降低磁懸浮軸承性能。

3 基礎激勵下磁懸浮轉子振動響應試驗驗證

3.1 試驗臺介紹

為了對基礎激勵下磁懸浮轉子建模與振動響應仿真結果的正確性進行分析,進行了試驗驗證。如圖15所示,試驗使用蘇試DC?300?3電磁振動臺,由RC?2000數字式振動控制儀控制,通過兩個電荷式加速度傳感器提供控制、反饋信號,振動臺可以提供垂向的激勵,包括簡諧和沖擊形式。磁懸浮轉子試驗臺固連于振動臺上,由磁懸浮軸承自帶的電渦流位移傳感器檢測轉子振動,截止頻率為3.5 kHz。轉子的振動響應位移信號采集與磁懸浮軸承控制由dSPACE1202半實物仿真平臺實現,采樣頻率為10 kHz。

3.2 基礎簡諧激勵

設定基礎簡諧激勵頻率為10 Hz,激勵幅值分別為1,2,3 mm,磁懸浮轉子振動響應如圖16(a)所示,仿真與試驗中轉子振幅隨激勵幅值的變化規律如圖16(b)所示??梢钥闯?,試驗與仿真結果吻合得很好,在數值上相近,并且試驗中轉子振動位移變化與激勵幅值近似呈線性關系,這與理論和仿真結果也是一致的。

設定基礎簡諧激勵幅值為1 mm,激勵頻率分別為5,10,15 Hz,磁懸浮轉子振動響應如圖17(a)所示。仿真與試驗中轉子振幅與激勵頻率之間的變化規律如圖17(b)所示。可以看出,試驗同樣驗證了數值仿真的準確性,試驗中轉子振動位移變化與激勵頻率之間近似呈二次方關系。

磁懸浮轉子受到的等效基礎外力為-mAω2·sin(ωt+φ),也就是說振動幅值與簡諧激勵頻率的平方成正比,與激勵幅值成正比,與基礎激勵加速度成正比。為了進一步驗證這一關系,保持磁懸浮轉子靜浮,由振動臺提供固定加速度為1g的基礎簡諧激勵,振動頻率從8 Hz到20 Hz線性增加,試驗結果如圖18所示,即使基礎激勵頻率在不斷變化,磁懸浮轉子的振動響應幅值幾乎保持不變,隨著頻率的升高轉子振幅稍有增大,這是由磁懸浮軸承不同頻率的支承特性略微不同和振動臺誤差引起的。圖19為基礎簡諧激勵幅值為1 mm,頻率從4 Hz到20 Hz線性增加時磁懸浮轉子振動響應的試驗結果,驗證了轉子振幅與激勵頻率的平方成正比的關系。

3.3 基礎沖擊激勵

設定基礎沖擊脈寬為5 ms,沖擊加速度幅值分別為1g,1.5g,2g和2.5g,磁懸浮轉子振動響應如圖20(a)所示,仿真與試驗中轉子響應峰值與沖擊加速度之間的變化規律如圖20(b)所示??梢钥闯觯S著沖擊加速度幅值的增大,轉子振動最大值響應幅值峰值也線性增加,這與仿真分析的規律是一致的,試驗中轉子響應峰值與仿真結果接近,最大誤差為3.33 μm,相對誤差分別為9.55%,6.12%,4.47%和1.8%,主要是由于振動臺施加沖擊激勵誤差引起的。在試驗中,受到基礎沖擊后轉子的反向位移比仿真要大,這是因為振動臺提供的沖擊并不是一個理想的半正弦形式,為了沖擊后振動臺回歸原位,需要進行補償,即沖擊結束后振動臺會產生一個反向激勵。

設定基礎沖擊加速度幅值為1g,沖擊脈寬分別為2,5,8和11 ms,磁懸浮轉子振動響應如圖21(a)所示,仿真與試驗中轉子振動響應峰值與沖擊脈寬之間的變化規律如圖21(b)所示??梢钥闯觯D子響應峰值隨基礎沖擊激勵脈寬的增大而提高,但趨勢逐步平緩,這與仿真結果也是吻合的。隨著脈寬的增大,試驗和仿真之間的相對誤差分別為18.42%,9.55%,2.18%和-0.41%,其中較大的誤差出現在轉子振動幅值較小時,是由于此時振動臺產生的沖擊激勵誤差較大。

4 結""論

本文從理論建模、仿真分析、試驗研究三方面探究了基礎激勵下磁懸浮轉子系統振動響應變化規律,試驗結果與仿真結果吻合,驗證了對磁懸浮轉子建模的準確性。結論如下:

(1)"對于基礎簡諧激勵,磁懸浮轉子振動幅值與基礎激勵幅值、頻率的平方成正比;對于基礎沖擊激勵,磁懸浮轉子響應峰值隨沖擊加速度幅值增加呈線性變化,隨沖擊脈寬增加而增加,但趨勢逐步平緩。

(2)"磁懸浮軸承具有可以主動控制的優點,可以通過調節控制器參數或使用特定的控制算法抑制基礎激勵引起的轉子振動。對于采用PID控制的磁懸浮軸承,適當增加比例系數可以提高軸承剛度以抑制轉子振幅;增加微分系數對基礎正弦激勵影響不大,但可以抑制基礎沖擊激勵下的轉子振幅,并減小振動振蕩時間。

本文探究了單一基礎激勵參數和磁懸浮軸承控制參數對轉子響應的影響,但對于影響因素之間的耦合作用、實際基礎激勵工況下的磁懸浮轉子振動響應還需要進一步研究。

參考文獻:

[1] Hawkins L,"Murphy B,"Zierer J,"et al. Shock and vibration testing of an AMB supported energy storage flywheel[J]. JSME International Journal. Series C,"Mechanical Systems,"Machine Elements and Manufacturing,"2003,"46(2):"429-435.

[2] Hawkins L,"Filatov A,"Khatri R,"et al. Design of a compact magnetically levitated blower for space applications[J]. Journal of Engineering for Gas Turbines and Power,"2021,"143(9):"091012.

[3] Shen Y,"Hu P,"Jin S,"et al. Design of novel shaftless pump-jet propulsor for multi-purpose long-range and high-speed autonomous underwater vehicle[J]. IEEE Transactions on Magnetics,"2016,"52(7):"7403304.

[4] Yi Y. Review and future of aircraft’s propulsion type[J]. Journal of Physics:"Conference Series,"2019,"1345(3):"032075.

[5] Duchemin M,"Berlioz A,"Ferraris G. Dynamic behavior and stability of a rotor under base excitation[J]. Journal of Vibration and Acoustics,"2006,"128(5):"576-585.

[6] Driot N,"Lamarque C H,"Berlioz A. Theoretical and experimental analysis of a base-excited rotor[J]. Journal of Computational and Nonlinear Dynamics,"2006,"1(3):"257-263.

[7] Dakel M,"Baguet S,"Dufour R. Steady-state dynamic behavior of an on-board rotor under combined base motions[J]. Journal of Vibration and Control,"2014,"20(15):"2254-2287.

[8] Han Q,"Chu F. Parametric instability of flexible rotor-bearing system under time-periodic base angular motions[J]. Applied Mathematical Modelling,"2015,"39(15):"4511-4522.

[9] Chen X,"Gan X,"Ren G. Nonlinear responses and bifurcations of a rotor-bearing system supported by squeeze-film damper with retainer spring subjected to base excitations[J]. Nonlinear Dynamics,"2020,"102:"2143-2177.

[10] Zhang W. Coupled dynamic analysis of magnetic bearing-rotor system under the influences of base motion[J]. Applied Mechanics and Materials,"2011,"109:"199-203.

[11] Xu Y,"Shen Q,"Zhang Y,"et al. Dynamic modeling of the active magnetic bearing system operating in base motion condition[J]. IEEE Access,"2020,"8:"166003-166013.

[12] Kasarda M,"Clements J,"Wicks A,"et al. Effect of sinusoidal base motion on a magnetic bearing[C]// IEEE International Conference on Control Applications,"Anchorage,"AK,"USA,"2000.

[13] Das A,"Dutt J,"Ray K. Active vibration control of flexible rotors on maneuvering vehicles[J]. AIAA Journal,"2010,"48(2):"340-353.

[14] Das A,"Dutt J,"Ray K. Active vibration control of unbalanced flexible rotor–shaft systems parametrically excited due to base motion[J]. Applied Mathematical Modelling,"2010,"34(9):"2353-2369.

[15] 祝長生. 基礎橫向振動對電磁軸承轉子系統動力特性影響的實驗研究[J]. 航空學報,"2004,"25(2):"168-171.

Zhu C S. Experimental investigation on dynamic behaviour of active magnetic bearing-rotor system subject to base vibration[J]. Acta Aeronautica et Astronautica Sinica,nbsp;2004,"25(2):"168-171.

[16] 楊紅進,"謝振宇,"趙靜. 基礎影響下車載飛輪電池動態性能的聯合仿真分析[J]. 系統仿真技術,"2014,"10(2):"130-139.

Yang H J,"Xie Z Y,"Zhao J. Co-simulation analysis of dynamic characteristics of flywheel battery for vehicle[J]. System Simulation Technology,"2014,"10(2):"130-139.

[17] 吳妙妮,"蔣科堅. 移動載體上電磁軸承-轉子系統空間位置的動力學建模與分析[J]. 機電工程,"2020,"37(12):"1400-1446.

Wu M N,"Jiang K J. Dynamic modeling and analysis of spatial position of electromagnetic bearing-rotor system on moving carrier[J]. Journal of Mechanical and Electrical Engineering,"2020,"37(12):"1400-1446.

[18] 張鵬,"祝長生. 機動飛行對磁軸承剛性轉子穩定性和響應影響[C]. 第九屆中國磁懸浮技術學術會議,"成都,"2021.

Zhang P,"Zhu C S. Influence of maneuvering flight on stability and response of active magnetic bearing rigid rotor system[C]// The 9th Chinese Symposium on Magnetic Suspension Technology,"Chengdu,"2021.

[19] Schweitzer G,"Maslen E. Magnetic Bearing:"Theory,"Design,"and Application to Rotating Machinery[M]. Berlin Heidelberg:"Springer-Verlag,"2009.

Investigation on the vibration response of the magnetically suspended rotor under base excitation

ZHANG Yue,"ZHOU Jin"SHEN Quan,"ZHANG Yi-bo

(College of Mechanical amp; Electrical Engineering,"Nanjing University of Aeronautics and Astronautics,Nanjing 210016,"China)

Abstract: The magnetically suspended rotor applied to the moving carrier may be subject to the base motion excitation,"causing the rotor vibration,"and even cause friction and system instability. To explore the vibration response of the magnetically suspended rotor under the base excitation,"the numerical simulation and experimental verification are conducted. The effect of the base excitation on the rotor is introduced into the differential equation of the rotor motion in the form of an additional generalized force. Considering the closed-loop control of the magnetic bearing,"the dynamic model of the magnetically suspended rotor under base excitation is established. The influence of the excitation amplitude and frequency,"the acceleration and shock width on the vibration response of the rotor is analyzed by numerical simulation. Finally,"the base excitation experiments were conducted. The experimental results verify the accuracy of the magnetically suspended rotor model under the base excitation. The results show that the rotor vibration amplitude is proportional to the amplitude and square of frequency of the base harmonic excitation,"the rotor vibration maximum is proportional to the base shock excitation acceleration. The proportional coefficient and differential coefficient of the magnetic bearing controller can suppress the rotor vibration brought by the base excitation.

Key words: magnetically suspended rotor;"base excitation;"vibration response;"experiment study

作者簡介: 張""越(1995―),男,博士,助理研究員。E-mail:"zhangyue08@nuaa.edu.cn。

通訊作者: 周""瑾(1972―),女,博士,教授。E-mail:"zhj@nuaa.edu.cn。

主站蜘蛛池模板: 国产又爽又黄无遮挡免费观看| 999精品视频在线| 亚洲a级毛片| 原味小视频在线www国产| 国产永久无码观看在线| 91免费国产高清观看| 一级毛片无毒不卡直接观看| 日本精品视频| 久久成人免费| 在线国产你懂的| 四虎成人免费毛片| 欧美精品在线看| 漂亮人妻被中出中文字幕久久| 婷婷伊人五月| 亚洲精品午夜天堂网页| 在线免费无码视频| 一本大道无码日韩精品影视| 国产乱子伦手机在线| 久久精品国产免费观看频道| 2019国产在线| 538国产视频| 久久精品国产亚洲AV忘忧草18| 日韩免费毛片| 香蕉精品在线| 黄色在线网| 一级黄色欧美| 国产在线视频二区| 婷婷亚洲综合五月天在线| 亚洲成人在线网| 人人妻人人澡人人爽欧美一区| 亚洲第一页在线观看| 99久久无色码中文字幕| 免费看av在线网站网址| 国内嫩模私拍精品视频| 亚洲黄色激情网站| 日韩一区二区三免费高清| 丁香亚洲综合五月天婷婷| 亚洲一区毛片| 一级在线毛片| 91视频区| 激情影院内射美女| 国产免费观看av大片的网站| 91精品专区| 国产高清在线观看91精品| 亚洲国产成人精品无码区性色| 免费看美女毛片| 亚洲一区二区三区在线视频| 成人在线观看一区| 丰满的熟女一区二区三区l| 亚洲欧美另类中文字幕| 无码日韩视频| 2048国产精品原创综合在线| 日本午夜影院| 欧美日韩在线成人| 国产免费人成视频网| 亚洲欧美精品日韩欧美| 日韩成人午夜| 国产成人成人一区二区| 国产精品自拍合集| 国产精品第5页| 极品性荡少妇一区二区色欲| 91久久精品日日躁夜夜躁欧美| 欧美日韩国产系列在线观看| 中字无码av在线电影| a级毛片在线免费| 97se亚洲综合在线韩国专区福利| 狠狠色综合网| 亚洲狼网站狼狼鲁亚洲下载| 99久久精品国产自免费| 国产精品尤物在线| 日韩在线观看网站| 免费毛片全部不收费的| 亚洲欧美精品在线| 国产黄网站在线观看| 欧美在线精品一区二区三区| 波多野吉衣一区二区三区av| 国产精品亚洲片在线va| 国产久操视频| 久久综合伊人77777| 国产午夜不卡| 日韩毛片免费| 都市激情亚洲综合久久|