








摘 要:為改善聚氨酯(PU)材料的力學性能,以聚四氫呋喃醚二醇、蓖麻油、雙羥基封端聚二甲基硅氧烷(PDMS)為軟段,二苯基甲烷二異氰酸酯(MDI)為硬段,采用綠色環保的無溶劑體系制備了有機硅改性的反應性聚氨酯(Si-PU)涂層,考察了PDMS質量分數對PU涂層的拉伸強度、斷裂伸長率、高溫熱穩定性、耐低溫性能、手感等的影響。結果表明:與未改性PU涂層相比,Si-PU涂層的拉伸強度、斷裂伸長率均得到明顯提升。當PDMS質量分數為7.6%時,改性涂層的拉伸強度較未改性PU涂層增長了51.9%;當PDMS質量分數為9.9%時,改性涂層的斷裂伸長率較未改性PU涂層增長了99.3%;隨著PDMS質量分數提高,質量損失速率最大的溫度有一定提高,涂層的玻璃化溫度逐漸降低,耐低溫性能提高,同時疏水性提高,手感變得更加柔軟,綜合性能得到顯著改善。
關鍵詞:反應性聚氨酯;涂層;有機硅;無溶劑;微相分離
中圖分類號:TQ334.1
文獻標志碼:A
文章編號:1009-265X(2024)07-0108-08
聚氨酯合成革是一種外觀、性能與天然皮革相近的塑料制品,已被廣泛應用于服裝、汽車座椅沙發等領域[1]。傳統合成革通常采用溶劑型聚氨酯或水性聚氨酯涂覆或貼合。溶劑型聚氨酯成品中一般殘留大量有機溶劑,可揮發有機物(VOCs)殘留高達1000 mg/kg以上[2]。水性聚氨酯只是減少了有機溶劑的用量,同時水作為溶劑會導致后期成膜耗能高。有機溶劑殘留不僅會造成環境污染,也會直接危害消費者身體健康[3]。隨著人們環保意識的不斷增強,以及國家“碳達峰”“碳中和”目標的實施,生態環保在當前越來越重要。無溶劑體系的反應性聚氨酯由于沒有溶劑加入,從源頭上避免了因溶劑引起的環境污染和高耗能問題,因此,反應性聚氨酯合成革的開發和應用必將成為行業發展趨勢。
有機硅聚合物硅氧鍵的夾角約為142.5°,硅氧鍵旋轉勢壘低。同時,有機硅聚合物具有良好的低溫柔順性和疏水性,被廣泛應用于紡織、建筑、日化等領域[4]。硅氧鍵的柔性使得有機硅聚合物能夠有效地將低能甲基側基團呈現給空氣界面[5],從而能夠提供低表面自由能,賦予涂層優異的疏水性,常被用來改善聚氨酯的防水耐磨性。當然,材料的耐低溫性能同樣重要,聚氨酯涂層材料服用環境溫度差異巨大,低溫環境下同樣要求材料具有良好的力學性能。綜上所述,采用有機硅改性制備反應性聚氨酯涂層,不但可以提高聚氨酯材料的耐低溫性,而且可以減少有機溶劑的使用,提高涂層的綠色環保性。目前,關于有機硅改性聚氨酯多涉及水性聚氨酯體系[6],對于有機硅改性無溶劑體系的反應性聚氨酯卻鮮有報道。
鑒于此,本文采用雙組分預聚法,選用雙羥基封端聚二甲基硅氧烷(PDMS)對反應性聚氨酯進行改性,繼而刮涂成型,研究PDMS含量對涂層力學、熱學性能、低溫性能、手感的影響。該研究可為緩解傳統產業所面臨的日益嚴峻的生態環保問題提供有益探索。
1 實驗
1.1 實驗材料
二苯基甲烷二異氰酸酯(MDI,C15H10N2O2)、聚四氫呋喃醚二醇(PTMEG,Mn=1000 g/mol)、蓖麻油(CO,CP)、苯甲酰氯(AR)、1,3丙二醇(1,3-PDO)、二月桂酸二丁基錫(DBTDL,95%,丙酮稀釋100倍使用)、雙羥基封端聚二甲基硅氧烷(PDMS),均購自上海阿拉丁生化科技股份有限公司;301催化劑(工業級),購自浙江禾欣科技有限公司。
1.2 羥基(—OH)混合物A料的制備
將聚四氫呋喃醚二醇、蓖麻油在120 ℃下真空脫水4 h,降溫至約25 ℃形成備用物。將聚四氫呋喃醚二醇、PDMS、蓖麻油、1,3丙二醇、301催化劑、二月桂酸二丁基錫,于25 ℃、2200 r/min攪拌5 min混合均勻備用。
1.3 異氰酸酯基(—NCO)封端預聚物B料的制備
首先將聚四氫呋喃醚二醇、蓖麻油在120 ℃下真空脫水4 h,降溫至約25 ℃形成備用物;其次在三口燒瓶中加入苯甲酰氯,二苯基甲烷二異氰酸酯于75 ℃左右300 r/min攪拌10 min至二苯基甲烷二異氰酸酯為熔融狀態;然后加入真空脫水的聚四氫呋喃醚二醇、蓖麻油于75 ℃左右500 r/min攪拌2 h得到預聚體B料,將預聚體降溫至25 ℃備用;最后采用二正丁胺法滴定預聚物,控制—NCO含量約占20%。
1.4 無溶劑聚氨酯涂層的制備
聚氨酯復合材料的配方見表1。涂層制備時,將B料加入到A料中,于25 ℃、2200 r/min攪拌50~90 s形成混合樹脂,然后將混合樹脂迅速傾倒在離型紙上,用軋輥刮涂,然后將離型紙置于100~130 ℃高溫熟化10~60 min。
1.5 測試與表征
1.5.1 化學結構表征
采用Nicolet is20傅里葉紅外光譜儀(美國賽默飛世爾科技公司)測定PU涂層及PDMS改性的Si-PU涂層的紅外吸收光譜。掃描范圍為4000~500 cm-1。
1.5.2 原子力顯微鏡測試
采用XE-7原子力顯微鏡(韓國 Park 原子力顯微鏡公司)掃描涂層的聚集態結構。測試時選擇輕敲模式,掃描速率為1 Hz。
1.5.3 拉伸性能測試
采用電子拉力試驗機(YG026Q)測定涂層的力學性能,按照ASTM D638標準進行,試樣尺寸為50 mm×10 mm,拉伸速度恒定為40 mm/min。
1.5.4 熱穩定性分析
采用TG209F1熱重分析儀(德國 NETZSCH 公司)測定涂層的熱穩定性。掃描范圍30~600 ℃,升溫速率10 ℃/min,氣體氛圍為氮氣。
1.5.5 動態熱力學熱機械分析
采用DMA1(METTLER TOLEDO)測定涂層的動態力學熱機械性能。溫度范圍為-70~100 ℃,升溫速率5 ℃/min,頻率為1 Hz。
1.5.6 差示掃描量熱分析
通過DSC214 Polyma型差式掃描量熱儀(德國 NETZSCH 公司)進行涂層的熱性能測試,掃描范圍-60~100 ℃,升溫速率10 ℃/min,氣體氛圍為氮氣。
1.5.7 接觸角測試
通過DSA25S接觸角測量儀(德國KRUSS公司)對涂層的水接觸角進行測試,設置水滴量為3 μL,水滴滴落速度為2.67 μL/s。
1.5.8 柔軟度測試
通過智能風格儀(美國 Nu Cybertek 公司)對涂層的柔軟度進行測試,每個樣品測量3次,取平均值。
2 結果與討論
2.1 聚氨酯涂層的紅外吸收光譜分析
圖1為MDI、PU涂層和PDMS改性的Si-PU涂層的紅外光譜。其中,2270 cm-1處為—NCO基團的伸縮振動峰,1699 cm-1處為CO的拉伸振動[7]。2270 cm-1處—NCO峰在MDI紅外光譜中出現,在g0—g4紅外光譜中消失,以及1699 cm-1CO峰的出現,都說明異氰酸酯基已完全反應為氨基甲酸酯基。2970~2869 cm-1處的吸收峰與—CH2的非對稱拉伸和對稱拉伸有關。隨著PDMS含量增加,1080 cm-1處Si—O—Si[8]吸收峰增強,816 cm-1處Si—CH3吸收峰也增強,表明成功制備了PDMS改性的無溶劑聚氨酯涂層。
2.2 原子力顯微鏡表征
原子力顯微鏡圖像中可以分辨出不同亮度的區域,PU涂層及Si-PU涂層的AFM照片如圖2所示。圖2中的亮白色區域為模量較高的硬段相,深色區域為模量較低的軟段相,且硬段分散在軟段之中[9-11]。在圖2 g0—g2中,兩個區域對比清晰可見,揭示了涂層較為明顯的相分離現象。對這些圖像的直觀觀察表明,隨著PDMS 含量的增加,大部分單個亮域的大小會減小,這表明軟段和硬段的混合程度得到了提高,其微相分離程度減弱[12]。
2.3 涂層力學性能分析
圖3是PU、Si-PU涂層的應力應變曲線,展示了涂層的拉伸強度和斷裂伸長率隨PDMS含量的變化情況。從圖3中可以發現,隨著PDMS在軟段中占比增加,涂層的拉伸強度呈現先逐漸上升后逐漸下降的趨勢,斷裂伸長率隨著PDMS含量上升逐漸增加。拉伸強度從g0的18.3 MPa增加到g3的27.8 MPa,增幅達51.9%,斷裂伸長率從g0的288.4%增加到g4的574.7%,增幅達99.3%。
蓖麻油分子鏈段較長且較柔軟,交聯點間隔較遠,鏈段極性相對較低,內聚能較低,因此涂層的拉伸強度相對較差[13]。PDMS增加導致硅氧鍵增多,使得分子間更易形成氫鍵,提高分子間作用力,涂層的拉伸強度增強[14]。聚氨酯通常是由軟段、硬段組成的嵌段共聚物,硬段通過分子間極性、氫鍵締合形成物理交聯固定相,軟段在同一溫度下一般處于高彈態。當PDMS含量進一步增加(硬段含量降低),軟段與聚氨酯硬段之間的微相分離減弱(對硬段結晶產生阻礙),可以削弱硬段對力學的鞏固作用[11],使得拉伸強度下降。隨著體系PDMS含量增加,蓖麻油的含量必然減少,因此整體交聯網狀結構下降,以及PDMS分子鏈柔順性較好,使得涂層斷裂伸長率隨之增加,薄膜韌性增強[15-16]。
2.4 涂層熱穩定性分析
圖4(a)和圖4(b)分別為涂層的熱重(TG)曲線和熱重微分(DTG)曲線。如圖4曲線所示,將PDMS引入到聚氨酯中,初始分解溫度T5%(質量損失5%的溫度)和Tmax(質量損失速率最大的溫度)均有一定提高。這是由于Si—O(450 kJ/mol)能量遠高于C—C(355 kJ/mol)和C—O(351 kJ/mol)[16],以及Si—O的存在使分子間形成更多的氫鍵。分子間作用力的增加,需要更多的能量來破壞氫鍵[17]。
從圖4(b)中可以看出,同種顏色的曲線有3個峰,即涂層熱分解的3個階段。第一階段240~300 ℃與聚氨酯涂層的緩慢脫水碳化有關。第二階段300~370 ℃與聚氨酯硬鏈段(脲鍵、氨基甲酸酯)分解有關[18],因為C—N鍵比C—O和C—C鍵更容易斷裂[19-20]。第三階段370~510 ℃為軟段的降解斷裂[21]。以上可以發現,PDMS的引入可以使涂層的熱分解過程向高溫方向移動,提高涂層的熱穩定性。
2.5 涂層動態力學熱機械性能分析
為探究PU涂層的動態熱力學性能,對所制涂層進行了DMA測試。圖5顯示出涂層的儲能模量和損耗因子隨溫度變化的曲線。由圖5(a)可以看出,涂層g4具有較高的儲能模量。隨著PDMS含量增高,涂層的儲能模量逐漸增加,儲能模量是材料剛度的體現[22-24]。從圖5(b)中可以看出,隨著PDMS含量增加,涂層的玻璃化溫度(Tg)逐漸降低,說明涂層的耐低溫性能逐漸變好,鏈段運動更容易,涂層即使在較低溫度下也能處于高彈態狀態[25]。另外,從圖5(b)中也可以發現,隨著PDMS含量逐漸增加,涂層的Tg峰個數呈現先增加后減少的趨勢,說明涂層的軟段微相分離先增加后減少。
2.6 涂層差示掃描量熱分析
圖6為涂層的DSC升溫曲線。從圖6中可以發現,所有樣品的玻璃化轉變溫度均位于-30 ℃左右,明顯低于DMA所測涂層的玻璃化溫度[26]。隨著PDMS含量增加,對應樣品的玻璃化溫度沒有明顯地向低溫方向移動的趨勢及同一涂層出現多個Tg的情況。這是由于DSC測試的熱效應隨樣品升溫速率、顆粒度、填裝方式等都有很大影響。DMA測試樣品模量或力學損耗隨溫度變化情況,結果受樣品厚度、測試頻率、升溫速率等影響。本文聚氨酯為交聯體系,交聯體系樹脂分子運動熱效應小,發生玻璃化轉變時(DSC測試)材料熱熔變化不明顯,而材料模量會變化幾個數量級,所以采用DMA比采用DSC測試Tg更可靠[27]。
2.7 接觸角分析
PU、Si-PU涂層的水接觸角的測試結果如圖7所示,所有涂層的水接觸角均大于111°。隨著PDMS含量提高,水接觸角總體呈現增大趨勢,這是因為PDMS的疏水烷基在表面富集,從而提高了涂層的疏水性[5]。類似于荷葉效應,一定的粗糙度會改變物體表面疏水性從而改變接觸角,g2接觸角略有減小可能是由于表面粗糙度變化引起的[9]。
2.8 柔軟度分析
圖8是PU及Si-PU涂層柔軟度隨PDMS含量變化的曲線。由圖8可知,隨著PDMS含量上升,涂層的柔軟度逐漸提高。硅氧鍵良好的柔性使得有機硅聚氨酯共聚物不但保留了聚氨酯的高強、耐磨性,同時又具有有機硅良好的柔性[28]。
3 結論
本文以聚四氫呋喃醚二醇、蓖麻油、雙羥基封端聚二甲基硅氧烷(PDMS)為軟段,二苯基甲烷二異氰酸酯、1,3丙二醇為硬段,采用綠色環保的無溶劑法制備了系列反應性聚氨酯涂層,同時探討了PDMS含量對涂層機械性能、微相分離、熱穩定性、耐低溫性、疏水性、手感等的影響,主要得出以下結論:
a)經過有機硅改性的反應性聚氨酯(Si-PU)涂層拉伸強度、斷裂伸長率均得到有效提升,其拉伸強度最大提高51.9%,斷裂伸長率最大提高99.3%;隨著PDMS質量分數提高,Si-PU的軟段、硬段的混合程度增加,微相分離程度減弱。
b)隨著PDMS質量分數提高,Tmax向高溫方向移動,涂層的熱穩定性增強;涂層的玻璃化溫度Tg逐漸降低,其耐低溫性能明顯提高;同時疏水性提高,手感變得更加柔軟,服用性能得到改善。
參考文獻:
[1]高龍飛, 錢曉明, 王立晶, 等. 抗菌型超細纖維合成革復合材料的研究進展[J]. 皮革科學與工程, 2022, 32(1): 40-45.
GAO Longfei, QIAN Xiaoming, WANG Lijing, et al. Research progress of antibacterial superfine fiber synthetic leather composite materials[J]. Leather Science and Engineering, 2022, 32(1): 40-45.
[2]嚴雪峰, 江敏, 胡苗苗. 聚氨酯合成革綠色清潔化生產發展趨勢分析[J]. 化工設計通訊, 2021, 47(2): 148-149.
YAN Xuefeng, JIANG Min, HU Miaomiao. Analysis on development trend of green and clean production of polyurethane synthetic leather[J]. Chemical Engineering Design Communications, 2021, 47(2): 148-149.
[3]李其原, 楊凱, 孫琰, 等. 無溶劑聚氨酯涂料的研究進展[J]. 上海涂料, 2023, 61(5): 37-40.
LI Qiyuan, YANG Kai, SUN Yan, et al. Research progress of solvent-free polyurethane coatings[J]. Shanghai Coatings, 2023, 61(5): 37-40.
[4]蘇錦華, 伍川, 瞿志榮, 等. 含氟有機硅材料的制備及性能研究[J]. 化工生產與技術, 2019, 25(1): 7-11.
SU Jinhua, WU Chuan, QU Zhirong, et al. Study on preparation and properties of fluorine organosilicon material[J]. Chemical Production and Technology, 2019, 25(1): 7-11.
[5]孫哲, 任松, 方劍, 等. 氟硅改性無溶劑聚氨酯涂層的制備及性能研究[J]. 皮革科學與工程, 2023, 33(1): 15-20.
SUN Zhe, REN Song, FANG Jian, et al. Preparation and property of fluorine-silicone modified solvent-free polyure-thane coating[J]. Leather Science and Engineering, 2023, 33(1): 15-20.
[6]李亞萍, 隋智慧, 郭制安, 等. 有機氟硅改性水性聚氨酯的合成及應用[J]. 熱固性樹脂, 2021, 36(4): 15-19.
LI Yaping, SUI Zhihui, GUO Zhian, et al. Synthesis and application of organic fluorine-silicon modified waterborne polyurethane[J]. Thermosetting Resin, 2021, 36(4): 15-19.
[7]BARRIONI B R, DE CARVALHO S M, ORFICE R L, et al. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications[J]. Materials Science and Engineering: C, 2015, 52: 22-30.
[8]謝子文, 李家煒, 汪芬萍, 等. 有機硅改性水性聚氨酯丙烯酸酯雜化膠乳的制備及其在涂料印花中的應用[J]. 紡織學報, 2022, 43(8): 119-125.
XIE Ziwen, LI Jiawei, WANG Fenping, et al. Preparation of polydimethylsiloxane modified waterborne polyurethane acrylate hybrid latex and its applications in pigment printing[J]. Journal of Textile Research, 2022, 43(8): 119-125.
[9]XI X, ZHANG Z, QI Y. Preparation and properties of PED-TDI polyurethane-modified silicone coatings[J]. Polymers, 2022, 14(15): 3212.
[10]LIU T, YANG X, ZHANG S, et al. Synthesis and properties of high performance thermoplastic polycarbonate polyurethane elastomers through a non-isocyanate route[J]. RSC Advances, 2022, 12(46): 30167-30173.
[11]LIU S, WANG X, NING N, et al. Preparation of high performance dielectric elastomers by tailoring the aggregation structure of polyurethane[J]. Acta Polymerica Sinica, 2023, 54(2): 266-276.
[12]XU X, YUAN Y, JIN S, et al. Study on polyurethane elastomer modification for improving low-temperature resistance of high-capacity polyurethane elastomeric bearing for bridges[J]. Construction and Building Materials, 2022, 347: 128625.
[13]梁圣榮, 李青飛, 覃秋菊. 交聯改性水性聚氨酯涂料的制備及性能研究[J]. 化工技術與開發, 2022, 51(12): 9-12.
LIANG Shengrong, LI Qingfei, QIN Qiuju. Preparation and properties of cross-linked modified waterborne polyurethane coatings[J]. Technology amp; Development of Chemical Industry, 2002, 51(12): 9-12.
[14]趙小亮, 高怡安, 陳海江. UV固化含氟聚硅氧烷改性水性聚氨酯的制備及性能研究[J]. 塑料科技, 2022, 50(9): 54-57.
ZHAO Xiaoliang, GAO Yian, CHEN Haijiang. Prepa-ration and properties of UV curable waterborne polyurethane modified by fluorinated polysiloxane[J]. Plastics Science and Technology, 202, 50(9): 54-57.
[15]呂斌, 張鶴年, 高黨鴿. PDMS改性蓖麻油基水性聚氨酯的制備及防污性能[J]. 精細化工, 2022, 39(3): 541-547.
LBin, ZHANG Henian, GAO Dangge. Preparation and antifouling performance of castor oil based waterborne polyurethane modified by PDMS[J]. Fine Chemicals, 2002, 39(3): 541-547.
[16]LI L, TIAN B, LI L, et al. Preparation and characterization of silicone oil modified polyurethane damping materials[J]. Journal of Applied Polymer Science, 2019, 136(22): 47579.
[17]FILIP D, MACOCINSCHI D, VLAD S. Thermo-gravimetric study for polyurethane materials for biomedical applications[J]. Composites Part B: Engineering, 2011, 42(6): 1474-1479.
[18]李鴿, 馬煜驕, 譚詩源, 等. 木質素改性蓖麻油基水性聚氨酯的制備與性能[J]. 皮革科學與工程, 2024, 34(4): 28-35.
LI Ge, MA Yujiao, TAN Shiyuan, et al. Preparation and performance of lignin-modified castor oil-based waterborne polyurethane[J]. Leather Science and Engineering, 2024, 34(4): 28-35.
[19]STEFANOVI I S, PRKOV M, OSTOJI S, et al. Montmorillonite/poly (urethane-siloxane) nanocomposites: Morphological, thermal, mechanical and surface properties[J]. Applied Clay Science, 2017, 149: 136-146.
[20]劉若望, 柴玉葉, 張初銀, 等. 水性聚氨酯的無溶劑法合成與性能研究[J]. 皮革科學與工程, 2023, 33(1): 54-59.
LIU Ruowang, CHAI Yuye, ZHANG Chuyin, et al. Study on the solvent-free synthesis and properties of waterborne polyurethane[J]. Leather Science and Engineering, 2023, 33(1): 54-59.
[21]王勁松, 習智華. 水性聚氨酯的軟段阻燃改性及其性能測試[J]. 紡織高?;A科學學報, 2021, 34(4): 19-25.
WANG Jinsong, XI Zhihua. Flame retardant modification of soft segment of waterborne polyurethane and its performance test[J]. Basic Sciences Journal of Textile Universities, 2021, 34 (4): 19-25.
[22]WANG Y, QIU F, XU B, et al. Preparation, mechanical properties and surface morphologies of waterborne fluorinated polyurethane-acrylate[J]. Progress in Organic Coatings, 2013, 76(5): 876-883.
[23]YI T, MA G, HOU C, et al. Polyurethane-acrylic hybrid emulsions with high acrylic/polyurethane ratios: Synthesis, characterization, and properties[J]. Journal of Applied Polymer Science, 2017, 134(8): 44488.
[24]YI T, MA G, HOU C, et al. Preparation and properties of poly(siloxane-ether-urethane)-acrylic hybrid emulsions[J]. Journal of Applied Polymer Science, 2017, 134(23):45532.
[25]HASSANAJILI S, KHADEMI M, KESHAVARZ P. Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes[J]. Journal of Membrane Science, 2014, 453: 369-383.
[26]XU C, TIAN Y, XIONG Z, et al. Fabrication of polydimethylsiloxane-based thermoplastic polyurethanes with excellent toughness and cold resistance[J]. ACS Applied Polymer Materials, 2022, 4(3): 1551-1558.
[27]李健豐, 徐亞娟. 測試方法對聚合物玻璃化溫度的影響[J]. 塑料科技, 2009, 37(2): 65-67.
LI Jianfeng, XU Yajuan. The effects of different measurement methods on the glass transition temperature of polymer[J]. Plastics Science and Technology, 2009, 37(2): 65-67.
[28]馮娜, 賀江平, 胡曉俠, 等. 有機硅-聚氨酯共聚物柔軟劑的合成研究[J]. 聚氨酯工業, 2016,31(3):36-39.
FENG Na, HE Jiangping, HU Xiaoxia, et al. Study on synthesis of silicone polyurethane copolymer softening agent[J]. Polyurethane Industry, 2016, 31(3): 36-39.
Preparation of hydroxyl silicone oil reinforced reactive polyurethane
coatings and their properties
WANG" Lin1," ZHANG" Junfeng2," HE" Fang3," WANG" Zhuo1," HUANG" Zhichao1,4," SUN" Fu1," QI" Dongming1,4,5
(1.College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University,
Hangzhou 310018, China; 2.Hexin Kuraray Microfiber Leather (Jiaxing) Co., Ltd., Jiaxing 314000, China;
3.Huanggang Division, Hubei Province Fibre Product Test Center, Huanggang 438021, China;
4.Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312030, China;
5.Zhejiang Provincial Key Laboratory of Green Cleaning Technology and Detergent, Lishui 323000," China)
Abstract:
Polyurethane, as an emerging organic synthetic polymer material, is known as the \"fifth largest plastic\" and is widely used in chemical, electronics, textile, medicine, construction, automobile, and many other fields because of its excellent performance. Polyurethane is broadly categorized as solvent-based one, water-based one and solvent-free one. Traditionally produced polyurethane is mostly solvent-based one. Solvent-based polyurethane seriously jeopardizes the physical and mental health of producers because of the addition of organic solvents such as N,N dimethylformamide and acetone to the production process, and the presence of residual organic solvents in the finished product may also be harmful to the physical and mental health of consumers. And water-based polyurethane replaces organic solvents with water, solving the problem of solvent pollution.
However, because of the existence of hydrophilic groups, the coating's water resistance decreases, which makes it easier to dissolve abd affects the mechanical properties. Meanwhile, the water evaporation is slow, resulting in a long drying time and heavy energy consumption. Solvent-free polyurethane (reactive polyurethanes) solves the above problems of polyurethane by virtue of the absence of solvent incorporation. Mechanical properties are an important index of coatings, and it is necessary for the article to investigate the effect of hydroxyl silicone oil on the mechanical properties of solvent-free polyurethane coatings.Polyurethane coatings with high strength, high-temperature thermal stability, low-temperature resistance, hydrophobicity, and softness were comprehensively designed. Diphenylmethane diisocyanate and 1,3 propylene glycol were used as hard segments, and poly(tetrahydrofuran ether diol), castor oil, and bis-hydroxy-capped polydimethylsiloxane (PDMS) were used as soft segments. The two-component method was used for prepolymerization, followed by mixing, scraping, and reaction molding. A series of solvent-free polyurethane coatings were synthesized by partially replacing castor oil with PDMS, and the effects of PDMS content on the mechanical and thermal properties, low-temperature resistance, hydrophobicity, and feel of the coatings were investigated. The effect of hydroxyl silicone oil on the mechanical properties of polyurethane was investigated in a solvent-free system. The tensile strength and elongation at break of reactive polyurethane (Si-PU) coatings modified by silicone were effectively enhanced, with a maximum increase of 51.9% in tensile strength and 99.3% in elongation at break. With the increase in PDMS mass fraction, the mixing degree of soft and hard segments of Si-PU increased, and the degree of microphase separation weakened. As the mass fraction of PDMS increased, Tmax moved toward high temperature, and the thermal stability of the coating was enhanced; the glass transition temperature (Tg) of the coating gradually decreased, and its low-temperature resistance was significantly improved; at the same time, the hydrophobicity was improved, and the handfeel became softer, thus the serviceability was improved.
The silicone-modified polyurethane coating prepared by the above method overcomes the shortcomings of solvent-based polyurethane and water-based polyurethane, and at the same time, its breaking strength, elongation at break, high-temperature thermal stability, low-temperature resistance, hydrophobicity, and softness have been improved to a certain extent. As the national requirements for environmental protection in the chemical industry become higher and higher, further research on solvent-free polyurethane technology is expected to be more in-depth and comprehensive in the future, so that it can be more widely used in various industries.
Keywords:
reactive polyurethane; coating; organosilicon; solvent free; microphase separation