999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

延安組煤與頁巖沉積古環(huán)境對比

2024-11-28 00:00:00吳文前門少斌申連凱高旭輝
西安科技大學學報 2024年5期

吳文前,門少斌,申連凱,等.延安組煤與頁巖沉積古環(huán)境對比——以鄂爾多斯盆地南部蘆村二號礦為例[J].西安科技大學學報,2024,44(5):934-941.

WU Wenqian,MEN Shaobin,SHEN Liankai,et al.Comparison of sedimentary paleoenvironment between "coal and shale in Yan’an Formation:A case study of Lucun No.2 Mine in southern Ordos Basin[J].Journal of Xi’an University of Science and Technology,2024,44(5):934-941.

摘要:鄂爾多斯盆地南部延安組底部發(fā)育穩(wěn)定的煤層,其頂部發(fā)育厚層頁巖。雖然煤和頁巖都是富有機質沉積巖,但其沉積期古環(huán)境差異特征尚待揭示。在蘆村二號礦采集了8件煤樣及其頂板發(fā)育的6件頁巖樣品,通過電感耦合等離子體發(fā)射光譜儀和電感耦合等離子質譜儀對煤及頁巖的主量元素和微量元素進行了測試,明確了其地球化學特征,探究不同巖性沉積期的古環(huán)境差異。結果表明:煤和頁巖中Al2O3含量最高,Fe2O3的含量次之,相較于上陸殼均值(UCC),煤中P2O5、Fe2O3富集程度較高,而頁巖中K2O、Al2O3、Fe2O3富集程度較高;煤中Cr、Ni、Cu、Sr、Mo和U元素明顯富集,而頁巖中僅有U元素呈富集狀態(tài),Ni、Cu、Sr和Mo元素呈明顯虧損狀態(tài);煤和頁巖的CIA值為均指示沉積體系處于溫暖-濕潤的氣候條件,且該氣候條件更加有利于煤層的發(fā)育;煤沉積期水體鹽度變化較大,為半咸水-咸水環(huán)境,而頁巖沉積期水體鹽度較為穩(wěn)定,為半咸水環(huán)境;相較于頁巖,成煤時期水體的古生產力更高,且煤形成于覆水較淺的泥炭沼澤環(huán)境,后期水體逐漸加深,生產力逐漸減弱;(Fe+Mn)/Ti均值大于25,表明沉積期煤層受熱液作用影響,接受了較高溫度的烘烤。探究煤和頁巖沉積期古環(huán)境的差異,為鄂爾多斯盆地延安組煤層的勘探及開發(fā)提供理論依據。

關鍵詞:煤;頁巖;主微量元素;延安組;蘆村二號礦

中圖分類號:P 595

Comparison of sedimentary paleoenvironment between coal and shale in Yan’an Formation

——A case study of Lucun No.2 Mine in southern Ordos Basin

WU Wenqian1,2,MEN Shaobin1,2,SHEN Liankai1,2,GAO Xuhui1,2

(1.Yanan Checun Coal Industry(Group)Co.,Ltd.,Yan’an 716000,China;

2.Lucun No.2 Coal Mine Branch,Fuxian Mining Development Co.,Ltd.,Fuxian 727502,China)

Abstract:The bottom of the Yan’an Formation in the southern part of the Ordos Basin is characterized by the stable development of coal seams,with a thick layer of shale at the top.Although both coal and shale are organic-rich sedimentary rocks,the characteristics of depositional stage differences remain to be revealed.Eight coal samples and six shale samples from the roof of the No.2 Mine in Lucun were collected,and the major elements and trace elements of coal and shale were tested using an Inductively Coupled Plasma Emission Spectrometer and Inductively Coupled Plasma Mass Spectrometer to define their geochemical characteristics and to explore the depositional environments of different lithologies.The results show that:The coal and the shale have the highest Al2O3 content,followed by Fe2O3.Compared to the Upper Continental Crust(UCC),the coal exhibits relatively high enrichment of P2O5 and Fe2O3,and the high concentration of K2O,Al2O3 and Fe2O3 in shale.In coal,Cr,Ni,Cu,Sr,Mo and U elements are obviously enriched,while in shale,only U elements are enriched and Ni,Cu,Sr and Mo elements are obviously depleted.The CIA values of the coal samples and the shale samples indicate a warm and humid climate in the depositional system and the climate condition is more favorable to the development of coal seam.The salinity of the coal "varies greatly during the sedimentary period,and the sedimentary water is a brackish water environment.However,the salinity of water in shale deposition period is relatively stable,and the water in sedimentary period is brackish water environment.Compared to the shale,the coal formed in a shallow water-covered peat swamp environment,with the water body gradually deepening and productivity gradually weakening.The average(Fe+Mn)/Ti value of the coal samples is greater than 25,indicating that the coal seam was influenced by hydrothermal activity during the depositional period and experienced high-temperature baking.This paper provides a theoretical basis for the exploration and development of coal seam in Yan’an Formation of Ordos Basin by exploring the difference of paleoenvironment between coal and shale deposition periods.

Key words:coal;shale;major and trace elements;Yan’an Formation;Lucun No.2 mine

0引言

鄂爾多斯盆地中侏羅統(tǒng)延安組是世界上規(guī)模最大、研究最為廣泛的含煤巖系之一,在中侏羅世沉積過程中形成了多套分布范圍廣、厚度大的煤層,由西向東、由北向南逐漸減薄[1-3]。盆地南部延安組層序不完整,局部發(fā)生缺失,殘存煤層主要為延安組一段、且厚度變化范圍較大[4]。

侏羅系延安組地層發(fā)育大量的煤和頁巖。雖然這2種巖性都屬于富含有機質的沉積巖。但二者卻有著不同的形成機制和沉積環(huán)境。一般認為,煤是在泥炭沼澤中由高等植物演化而來[5],而頁巖主要是在湖泊環(huán)境中由低等植物死亡后保存下來的[6-7]。因此,處于同一地層單元的煤和頁巖,古沉積環(huán)境有可能存在明顯的快速轉換。前人研究表明,煤和頁巖的組合是由物質結構和沉積物供應引起的基準面旋回變化的結果[8-9]。煤中元素的含量及分布特征,通常可用來分析成煤期的古氣候特征及演變規(guī)律[10-12]。HAI等通過野外露頭、巖芯及有機地球化學等資料對鄂爾多斯盆地西南緣彭陽地區(qū)延安組進行了層序劃分和沉積環(huán)境分析,認為延安組地層中的煤普遍存在植物碎屑,表明該區(qū)在成煤期普遍發(fā)育泥炭沼澤環(huán)境[13];趙存良等通過XRF和低溫灰化-X射線衍射-Siroquant定量分析等手段研究了鄂爾多斯盆地西緣寧東煤田中主微量元素,認為煤中Na2O含量相對較高,主要的物質來源為含高Na元素的陸源碎屑礦物[14];LI等利用XRF和ICP-MS,分別對鄂爾多斯盆地黃陵礦區(qū)延安組的主量元素和微量元素進行了研究,并從空間位置和巖性差異2個方面對延安組進行了分析,認為延安組早期含煤巖系的古氣候為溫暖濕潤,后期趨于干熱,局部為淺湖亞相,經歷了從鹽湖到淡水環(huán)境的過渡[15];LV等采用巖石學和地球化學相結合的方法,對黃縣盆地煤和頁巖的礦物組成、主微量元素含量及地球化學參數分布特征進行了研究,探討了煤與頁巖的沉積模式,認為煤形成時期的古氣候較為溫暖濕潤,而頁巖形成時期的古氣候較為涼爽干燥[16]。含煤巖系中廣泛存在著煤與頁巖交替發(fā)育的現象,且溫暖濕潤的泥潭沼澤環(huán)境是成煤期重要的古環(huán)境條件[17-18],但盆地南部延安組成煤期煤與頁巖沉積環(huán)境的差異特征仍需深入探討。

以蘆村二號礦延安組含煤巖系為研究對象,在巷道工作面采集煤及頂板頁巖樣品,開展主量元素和微量元素測試,明確2種巖性的地球化學特征,探究煤和頁巖沉積期古環(huán)境的差異,以期對鄂爾多斯盆地延安組煤層的勘探及開發(fā)提供理論依據。

1蘆村二號礦地質背景

蘆村二號礦地處陜西省富縣直羅鎮(zhèn)南側,構造位置上位于鄂爾多斯盆地伊陜斜坡南部(圖1),整體呈西傾單斜。印支運動后,盆地進入穩(wěn)定沉降期,并形成了地層厚度穩(wěn)定、沉積特征鮮明的河湖相三角洲沉積體系,區(qū)內未發(fā)現較大的斷層及巖漿活動[19]。礦區(qū)鉆孔揭露地層主要有三疊系、侏羅系、白堊系、新近系和第四系。延安組地層主要發(fā)育煤、頁巖、泥巖和砂巖等巖性,可采煤層為侏羅系延安組2號煤層。礦區(qū)內該煤層厚度普遍大于0.6 m,煤層頂板發(fā)育厚層頁巖,厚度大于0.5 m。

2樣品采集及測試方法

在工作面采集延安組2號煤樣品8件與其頂板頁巖樣品6件(圖2)。進行主量元素測試前,將煤和頁巖樣品磨制為200目以上的粉末。煤樣先置于900 ℃的高溫馬弗爐中,待質量不變后取出。稱取0.1 g煤灰和頁巖樣品放入聚四氟乙烯坩堝中,加入氫氟酸、硝酸和高氯酸,放置在230 ℃高溫電熱板上靜置5個小時,后用王水浸提并用超純水定容至50 mL。之后采用電感耦合等離子體發(fā)射光譜儀(ICP-OES)和電感耦合等離子質譜儀(ICP-MS)對樣品的主量和微量元素進行測量,主量元素共測試9種元素,分析誤差小于0.01wt%。微量元素共測試8種元素,分析誤差小于1×10-6。測試采用的標準物質為GBW07452。全部測試在陜西省煤炭綠色開發(fā)地質保障重點實驗室完成。

3煤與頁巖地球化學特征

3.1煤和頁巖主量元素特征

蘆村二號礦延安組2號煤中,Al2O3含量最高(15.24%~28.66%),其次樣品中Fe2O3和CaO的含量也較高(分別為7.43%~20.94%和1.95%~16.42%)(表1)。此外,還檢測出含量小于5%的K2O、Na2O、MgO、MnO、P2O5和TiO2元素。相較于上陸殼均值(UCC)[20],煤中Fe2O3和P2O5富集程度較高,K2O、MgO虧損程度明顯(圖3(a))。

煤層頂板的頁巖測試結果顯示(表1),頁巖中Al2O3含量最高(15.59%~23.95%),其次為Fe2O3的含量(3.27%~7.40%),其余元素含量均小于5%。相較于2號煤,頁巖中Al2O3、Fe2O3和CaO的含量明顯較低。Al元素往往可以代指陸源碎屑物質和黏土礦物的含量[21],可以看出煤中Al的含量相對較高,表明煤中陸源碎屑物質的輸入較多,黏土礦物含量也較高。煤中Fe元素的含量也明顯高于頁巖中Fe元素的含量,指示煤中富含Fe元素的礦物(如黃鐵礦)含量也相較于頁巖中的高。此外,相較于頁巖,煤中Ca元素也呈現出較高的含量,可能指示煤中的碳酸鹽礦物含量較高。從富集系數分布圖可以看出(圖3(b)),頁巖中K2O、Al2O3和Fe2O3相對富集,其余元素都呈虧損狀態(tài),其中CaO、Na2O和P2O5元素虧損程度較高。

3.2煤和頁巖微量元素特征

蘆村二號礦延安組2號煤和頁巖共測試8種微量元素(表2)。可以看出煤中各元素含量均高于頁巖中對應的元素含量,相較于上陸殼均值(UCC)[20],煤中Cr、Ni、Cu、Sr、Mo和U元素表現出明顯的富集特征(圖4(a)),而頁巖中僅有U元素呈富集狀態(tài),Ni、Cu、Sr和Mo元素呈明顯虧損狀態(tài)(圖4(b))。

4煤與頁巖古環(huán)境恢復與對比

化學蝕變指數(CIA)可以用于判識母巖的風化強度和氣候等特征,當該值介于50~65、65~85和85~100間分別指示低、中、高的分化強度及寒冷-干燥、溫暖-濕潤和炎熱-潮濕的氣候特征[22-23]。其計算公式如下

CIA=100×Al2O3/(Al2O3+CaO*+Na2O+K2O)(1)

式中CaO*為硅酸鹽中的CaO,即全巖中CaO扣掉化學沉積的CaO的摩爾分數。

校正后CaO*摩爾數為Na2O和CaO的最小值[24-25]。計算結果顯示(表3),煤樣的CIA值為70.27~80.04(平均75.40),頁巖的CIA值為70.97~75.83(平均73.73),均指示沉積體系處于溫暖-濕潤的氣候條件。Sr/Cu比值也常用于指示古氣候條件,該值越大,氣候條件更趨于干熱的條件[4]。煤和頁巖的Sr/Cu值分別為2.602~6.091(平均4.928)和4.617~7.364(平均6.479)。可以看出,頁巖Sr/Cu值明顯大于煤,表明成煤期氣候溫暖-濕潤,后期古氣候有逐漸向干熱條件轉換的趨勢。

MgO/Al2O3×100值可用于判識沉積巖形成時期的水體環(huán)境,當該值小于1時指示淡水環(huán)境,當該值大于10時,則指示咸水環(huán)境[26-27]。可以看出,煤的MgO/Al2O3×100的值為1.15~103.96,均值為26.07(表3),表明煤沉積期水體鹽度變化較大,沉積水體整體為半咸水-咸水環(huán)境。頁巖的MgO/Al2O3×100為7.31~8.42,均值為7.82,較小的數值變化區(qū)間指示頁巖沉積期水體鹽度較為穩(wěn)定,沉積期水體為半咸水環(huán)境。Sr/Ba也可用于指示沉積期的古鹽度,且該值越大表明水體鹽度越高[28]。煤樣的Sr/Ba值為1.327~4.426(平均2.696),明顯高于頁巖的Sr/Ba值(0.165~0.258,平均0.218),表明延安組2號煤沉積期水體鹽度相對較高,成煤后期水體的鹽度呈逐漸較小的趨勢。

通常沉積巖的P/Ti可以表征沉積期水體古生產力的大小,該值隨著古生產力的增大而含量逐漸增高[29-30]。當該值在0.12以下時,指示較低的生產力,而在0.12以上時,則顯示出較高的生產力[31-32]。可以看出,相較于頁巖的P/Ti值(0.04~0.23,平均0.12),煤的P/Ti值明顯較高(0.43~1.33,平均0.75),顯示成煤時期水體的古生產力更高。前人研究表明,沉積巖中Mo和U元素可用作代指沉積水體的古生產力,這2個元素含量越大,水體的古生產力越高[20]。煤樣的Mo和U元素含量分別為8.004~17.743(平均13.156)和3.526~17.495(平均9.791),含量明顯高于頁巖的Mo元素(0.313~0.629,平均0.467)和U元素(3.718~4.871,平均4.255),也表明成煤期水體的古生產力更高,與P/Ti比值得出的結論一致。可見,延安組成煤期具有較高的水體古生產力,后期水體的古生產力逐漸下降。

V/Cr和V/(V+Ni)可用于指示古水體的氧化還原條件,當該值越大時,水體的還原性越強[28]。煤樣的V/Cr和V/(V+Ni)分別為0.153~1.021(平均0.612)和0.076~0.731(平均0.405),均低于頁巖的V/Cr(1.141~1.298,平均1.231)和V/(V+Ni)(0.767~0.805,平均0.782),表明頁巖沉積期水體還原強度較煤沉積期更高。

Mn/Fe可以反映古水深情況,該值越大表明水體越深[33-34]。可以看出煤樣的Mn/Fe(0.002 1~0.009 8,平均0.005 3)明顯低于頁巖樣品值(0.010 8~0.016 3,平均0.014 4),表明煤形成于覆水較淺的泥炭沼澤環(huán)境,后期水體逐漸加深,生產力逐漸減弱。該結論與前述研究結果一致。值得注意的是,(Fe+Mn)/Ti值可用于判識熱液條件特征,當該值大于25則被證實沉積期經歷了較高的溫度條件[35-37],可以看出煤樣的(Fe+Mn)/Ti均值大于25,則表明沉積期煤層受熱液作用影響,接受了較高溫度的烘烤。

5結論

1)2號煤和頁巖中Al2O3含量最高,其次為Fe2O3的含量。相較于上陸殼均值(UCC),煤中P2O5、Fe2O3富集程度較高,而頁巖中K2O、Al2O3、Fe2O3富集程度較高。

2)2號煤中Cr、Ni、Cu、Sr、Mo和U元素明顯富集,而頁巖中僅有U元素呈富集狀態(tài),Ni、Cu、Sr和Mo元素呈明顯虧損狀態(tài)。

3)相較于后期頁巖的形成時期,延安組2號煤成煤期水體為半咸水-咸水環(huán)境,水體的古生產力更高,水體深度較淺,還原條件相對較弱,且接受了明顯的高溫烘烤。

參考文獻(References):

[1]孟立娜,李鳳杰,方朝剛,等.鄂爾多斯盆地吳起地區(qū)侏羅紀早中期河流沉積及油氣分布[J].西安石油大學學報(自然科學版),2012,27(6):1-8.

MENG Lina,LI Fengjie,FANG Chaogang,et al.Study on fluvial deposits and oil amp; gas distribution of early and middle Jurassic in Wuqi area,Ordos[J].Journal of Xi’an Shiyou University(Natural Science Edition),2012,27(6):1-8.

[2]李鈺,袁國嫻,郭子光,等.鄂爾多斯盆地延安組沉積環(huán)境與聚煤規(guī)律[J].中國地質,1983(5):24-27.

LI Yu,YUAN Guoxian,GUO Ziguang,et al.Sedimentary environment and coal accumulation of Yan’an Formation in Ordos Basin[J].Geology in China,1983(5):24-27.

[3]梁積偉.鄂爾多斯盆地侏羅系沉積體系和層序地層學研究[D].西安:西北大學,2007.

LIANG Jiwei.Research on sedimentary system and squence stratigraphy of the Jurassic in Ordos Basin[D].Xi’an:Northwest University,2007.

[4]杜芳鵬.鄂爾多斯盆地延安組煤巖學及煤元素地球化學特征[D].西安:西北大學,2019.

DU Fangpeng.Petrological and element geochemical characteristics of the Yan’an coals in Ordos Basin[D].Xi’an:Northwest University,2019.

[5]DIESSEL C F K.The stratigraphic distribution of inertinite[J].International Journal of Coal Geology,2010,81(4):251-268.

[6]CURIALE J A,GIBLING M R.Productivity control on oil shale formation-Mae Sot Basin,Thailand[J].Organic Geochemistry,1994,21(1):67-89.

[7]AHMED W.Sedimentology,depositional environments and basin evolution of coal and oil shale-bearing sediments in the Delbi-Moye Basin,Southwestern Ethiopia[J].SINET:Ethiopian Journal of Science,2004,27(1):45-60.

[8]LV D,WANG D,LI Z,et al.Depositional environment,sequence stratigraphy and sedimentary mineralization mechanism in the coal bed-and oil shale-bearing succession:A case from the Paleogene Huangxian Basin of China[J].Journal of Petroleum Science and Engineering,2017,148:32-51.

[9]LI Z,WEI J,LI S,et al.The basin-filling features and sequence division in the Paleogene Huangxian fault basin,Shandong[J].Lithofacies Palaeogeography,1998,18(4):1-8.

[10]SUTTNER L J,DUTTA P K.Alluvial sandstone composition and palaeoclimate,framework mineralogy[J].Journal of Sedimentary Petrology,1986,56:329-345.

[11]HIERONYMUS B,KOTSCHOUBEY B,BOULEGUE J.Gallium behavior in some contrasting lateritic profiles from Cameroon and Brazil[J].Journal of Geochemical Exploration,2001,72(2):147-163.

[12]ROY D K,ROSER B P.Climatic control on the composition of Carboniferous-Permian Gondwana sediments,Khalaspir Basin,Bangladesh[J].Gondwana Research,2013,23(3):1163-1171.

[13]HAI L,MU C,XU Q,et al.The sequence stratigraphic division and depositional environment of the Jurassic Yan’an Formation in "the Pengyang Area,Southwestern Margin of the Ordos Basin,China[J].Energies,2022,15(14):5310.

[14]趙存良.鄂爾多斯盆地與煤伴生多金屬元素的分布規(guī)律和富集機理[D].北京:中國礦業(yè)大學(北京),2015.

ZHAO Cunliang.Distribution and enrichment mechanism of multimetallic elements associated with coal in Ordos Basin[D].Beijing:China University of Mining and Technology,2015.

[15]LI Y,YAN M,LIU P,et al.Characteristics of the tecto-nic background and sedimentary paleoenvironment of coal-bearing strata from the Yan’an Formation in the Ordos Basin:Evidence from the geochemistry of Major and Trace Elements[J].ACS Earth and Space Chemistry,2022,6(11):2680-2697.

[16]LV D,LI Z,WANG D,et al.Sedimentary model of coal and shale in the Paleogene Lijiaya Formation of the Huangxian Basin:Insight from petrological and geochemical characteristics of coal and shale[J].Energy amp; Fuels,2019,33(11):10442-10456.

[17]俞桂英.黃隴煤田侏羅系延安組沉積特征[J].煤田地質與勘探,1991,19(4):16-21.

YU Guiying.Sedimentary characteristics of Jurassic Yan’an Formation in Huanglong coalfield[J].Coal Geology amp; Exploration,1991,19(4):16-21.

[18]王婷茹.寧東煤田含煤巖系層序地層及聚煤規(guī)律研究[D].西安:西安科技大學,2012.

WANG Tingru.Study of sequence stratigeaphy and coal accumulation regularities in coal bearing formation of eastern Ningxia coalfield[D].Xi’an:Xi’an University of Science and Technology,2012.

[19]李寶芳,李禎,林暢松,等.鄂爾多斯盆地中部下侏羅統(tǒng)沉積體系和層序地層[M].北京:地質出版杜,1995.

[20]LI D,HE Q,LI H,et al.Organic matter enrichment and palaeoenvironmental comparison of Alinian fine-grained sedimentary rocks in lake facies[J].Gas Science and Engineering,2023,116:205055.

[21]PAN Y,HUANG Z,LI T,et al.Environmental response to volcanic activity and its effect on organic matter enrichment in the Permian Lucaogou Formation of the Malang Sag,Santanghu Basin,Northwest China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2020,560:110024.

[22]ZHOU T,ZHOU Y,ZHAO H,et al.Depositional setting and enrichment mechanism of organic matter of Lower Cretaceous shale in Ri-Qing-Wei Basin in the Central Sulu Orogenic Belt[J].Frontiers in Earth Science,2022,9:808916.

[23]何謀惷,丁振舉,王翔,等.湖北鶴峰走馬鎮(zhèn)地區(qū)牛蹄塘組巖石地球化學特征:物源、古風化、沉積環(huán)境和構造背景[J].地球科學,2023,48(9):3280-3295.

HE Mouchun,DING Zhenju,WANG Xiang,et al.Geochemical characteristics of the Niutitang Formation in Zoumazhen area,Hefeng,Hubei:Provenance,paleoweathering,sedimentary environment and tectonic setting[J].Earth Science,2023,48(9):3280-3295.

[24]TAO S,XU Y,TANG D,et al.Geochemistry of the Shitoumei oil shale in the Santanghu Basin,Northwest China:Implications for paleoclimate conditions,weathering,provenance and tectonic setting[J].International Journal of Coal Geology,2017,184:42-56.

[25]XU L,HUANG S,LIU Z,et al.Paleoenvironment evolutionary characteristics of Niutitang shale in western Hubei,Middle Yangtze,China[J].ACS Omega,2022,7(28):24365-24383.

[26]WANG E,GUO T,LI M,et al.Depositional environment variation and organic matter "accumulation mechanism of marine-continental transitional shale in the Upper Permian Longtan Formation,Sichuan Basin,SW China[J].ACS Earth and Space Chemistry,2022,6(9):2199-2214.

[27]毛光周,劉曉通,安鵬瑞,等.無機地球化學指標在古鹽度恢復中的應用及展望[J].山東科技大學學報(自然科學版),2018,37(1):92-102.

MAO Guangzhou,LIU Xiaotong,AN Pengrui,et al.Application and outlook of inorganic "geochemical indexes in reconstruction of palaeosalinity[J].Journal of Shandong University of Science and Technology(Natural Science),2018,37(1):92-102.

[28]王寧,許鋒.陜南鎮(zhèn)巴地區(qū)牛蹄塘組頁巖沉積環(huán)境分析[J].礦產勘查,2019,10(8):1764-1774.

WANG Ning,XU Feng.Study of sedimentary environment of the Niutitang Formation shale in Xixiang-Zhenba area,Shaanxi[J].Mineral Exploration,2019,10(8):1764-1774.

[29]YANG Y,LIU Y,ZHOU D,et al.Lithotypes,organic matter and paleoenvironment characteristics in the Chang 73 submember of the Triassic Yanchang Formation,Ordos Basin,China:Implications for organic matter accumulation and favourable target lithotype[J].Journal of Petroleum Science and Engineering,2022,216:110691.

[30]XI Z,TANG S,ZHANG S,et al.Factors controlling organic matter accumulation in the Wufeng-Longmaxi formations in Northwestern Hunan province:Insights from major/trace elements and shale composition[J].Energy amp; Fuels,2020,34(4):4139-4152.

[31]LI H,LI D,HE Q,et al.Controlling mechanism of shale palaeoenvironment on its tensile strength:A case study of Banjiuguan Formation in Micangshan Mountain[J].Fuel,2024,355:129505.

[32]WANG Q,JIANG F,JI H,et al.Differential enrichment of organic matter in saline lacustrine source rocks in a rift basin:A case "study of Paleogene source rocks,Dongpu Depression,Bohai Bay Basin[J].Natural Resources Research,2020,29:4053-4072.

[33]WANG Q,JIANG F,JI H,et al.Effects of paleosedimentary environment on organic matter enrichment in a saline lacustrine rift basin:A case study of Paleogene source rock in the Dongpu Depression,Bohai Bay Basin[J].Journal of Petroleum Science and Engineering,2020,195:107658.

[34]WU Y,LIU C,LIU Y,et al.Geochemical characteristics and the organic matter enrichment of the Upper Ordovician Tanjianshan "Group,Qaidam Basin,China[J].Journal of "Petroleum Science and Engineering,2022,208:109383.

[35]LI D,LI R,TAN C,et al.Origin of silica,paleoenvironment,and organic matter enrichment in the Lower Paleozoic Niutitang and "Longmaxi Formations of the northwestern Upper Yangtze Plate:Significance for hydrocarbon exploration[J].Marine and Petroleum Geology,2019,103:404-421.

[36]HE C,JI L,WU Y,et al.Characteristics of hydrothermal sedimentation process in the Yanchang Formation,south Ordos Basin,China:Evidence from element geochemistry[J].Sedimentary Geology,2016,345:33-41.

[37]YOU J,LIU Y,ZHOU D,et al.Activity of hydrothermal fluid at the bottom of a lake and its influence on the development of high-quality source rocks:Triassic Yanchang Formation,southern Ordos Basin,China[J].Australian Journal of Earth Sciences,2020,67(1):115-128.

(責任編輯:李克永)

收稿日期:2024-05-15

基金項目:陜西省重點研發(fā)計劃項目(2022GD-TSLD-64)

通信作者:吳文前,男,陜西延安人,工程師,E-mail:624993427@qq.com

主站蜘蛛池模板: 精品精品国产高清A毛片| a国产精品| 国产精品亚洲精品爽爽| 一级高清毛片免费a级高清毛片| 国产精品主播| 国产精品综合色区在线观看| 亚洲视频无码| 国产鲁鲁视频在线观看| 久久成人18免费| 欧美成人午夜视频| 国产最新无码专区在线| 五月婷婷精品| 在线观看国产黄色| 亚洲成网站| 亚洲最大福利网站| 午夜a视频| 在线va视频| 伊人激情久久综合中文字幕| 性做久久久久久久免费看| 综合网天天| 日本国产一区在线观看| 四虎精品国产AV二区| 国产亚洲现在一区二区中文| 又爽又大又黄a级毛片在线视频| 91日本在线观看亚洲精品| 操国产美女| 免费av一区二区三区在线| 成年看免费观看视频拍拍| 成年网址网站在线观看| 国产高潮流白浆视频| 欧美精品v欧洲精品| 国产尤物在线播放| A级毛片高清免费视频就| 亚洲国产日韩一区| 在线观看国产精美视频| 精品国产一区二区三区在线观看 | 麻豆AV网站免费进入| 91网红精品在线观看| 中文纯内无码H| 国产成人欧美| 久久综合结合久久狠狠狠97色| 亚洲精品波多野结衣| 日韩黄色精品| 国产高潮视频在线观看| 国产成人精品午夜视频'| 亚洲aaa视频| 久久综合五月婷婷| 91免费观看视频| 亚洲码在线中文在线观看| 久久久久免费精品国产| 久久国产精品娇妻素人| 成人国产精品网站在线看| 伊人婷婷色香五月综合缴缴情| 婷婷亚洲最大| 欧美日韩导航| 77777亚洲午夜久久多人| 精品国产免费人成在线观看| 亚洲成av人无码综合在线观看| 69免费在线视频| 久久免费精品琪琪| 色婷婷综合在线| 日韩欧美中文亚洲高清在线| 日韩欧美中文字幕在线韩免费| 免费观看三级毛片| 一级做a爰片久久免费| 亚洲天堂久久久| 午夜无码一区二区三区在线app| 免费国产无遮挡又黄又爽| 人妻无码一区二区视频| 五月丁香在线视频| 91美女视频在线| 欧美一级爱操视频| 无码久看视频| 亚洲人成日本在线观看| 欧美另类图片视频无弹跳第一页| 免费观看男人免费桶女人视频| 67194亚洲无码| 欧美色丁香| 91亚洲影院| 波多野结衣一区二区三区AV| 视频一区亚洲| 日本欧美中文字幕精品亚洲|