







Efficient depolymerisation of waste polyester in alkaline water-methanol solution forterephthalic acid recovery
摘要:
為了高效解聚廢舊聚酯回收對(duì)苯二甲酸,本文采用水—溶劑熱技術(shù),以堿性水—甲醇溶液高溫高壓處理廢聚酯粒料,再用硫酸析出對(duì)苯二甲酸,并優(yōu)化了堿性水—甲醇溶液解聚聚酯的工藝條件。結(jié)果表明,浴比為1︰20時(shí),質(zhì)量濃度50 g/L的氫氧化鈉與100 mL/L的甲醇混合溶液,160 ℃條件下處理聚酯粒料2.5 h,對(duì)苯二甲酸產(chǎn)回收率為94.9%;紅外光譜、核磁共振譜和高效液相色譜分析表明,所得分離產(chǎn)物的化學(xué)性質(zhì)與對(duì)苯二甲酸標(biāo)準(zhǔn)品高度吻合,其純度為90.53%。標(biāo)準(zhǔn)化視覺(jué)和數(shù)字色彩評(píng)定儀分析表明,所得對(duì)苯二甲酸與商業(yè)品存在較大色差(16.02),含有少量淡黃色雜質(zhì)。
關(guān)鍵詞:
廢舊聚酯;解聚;對(duì)苯二甲酸;堿性水—甲醇;氫氧化鈉
中圖分類(lèi)號(hào):
TS159; TQ340.68
文獻(xiàn)標(biāo)志碼:
A
文章編號(hào): 10017003(2024)10期數(shù)0060起始頁(yè)碼09篇頁(yè)數(shù)
DOI: 10.3969/j.issn.1001-7003.2024.10期數(shù).007(篇序)
收稿日期:
20240126;
修回日期:
20240913
基金項(xiàng)目:
國(guó)家自然科學(xué)基金面上項(xiàng)目(51873169)
作者簡(jiǎn)介:
旋湘桃(1996),女,碩士研究生,研究方向?yàn)榧徔棽牧细男约肮δ苄约徔椘?。通信作者:張輝,教授,hzhangw532@xpu.edu.cn。
中國(guó)是世界上最大的紡織品生產(chǎn)與消費(fèi)國(guó),據(jù)2013年統(tǒng)計(jì),消費(fèi)后紡織品廢料回收利用率僅有15%[1]。至2020年,國(guó)家商務(wù)部統(tǒng)計(jì)中國(guó)產(chǎn)生的廢舊紡織品已超過(guò)2 000萬(wàn)t,但回收利用量只有460萬(wàn)t,約20%。雖然可以采取能量、物理和化學(xué)方法處理廢舊紡織品,但是大部分紡織固體廢棄物不是被焚燒、露天傾倒或填埋,就是分解成納/微顆粒進(jìn)入到環(huán)境中[2]。這種粗放式回收技術(shù)不僅會(huì)產(chǎn)生二噁英等有害和難降解物質(zhì),造成二次污染,而且浪費(fèi)了大量可回收資源[3]。2022年國(guó)家發(fā)展改革委與商務(wù)部、工業(yè)和信息化部聯(lián)合印發(fā)526號(hào)文件《關(guān)于加快推進(jìn)廢舊紡織品循環(huán)利用的實(shí)施意見(jiàn)》,提出到2025年初步建立廢舊紡織品循環(huán)利用體系,廢舊紡織品循環(huán)利用率達(dá)到25%,再生纖維產(chǎn)量達(dá)到200萬(wàn)t。
聚酯纖維因其優(yōu)良的熱學(xué)、力學(xué)和化學(xué)穩(wěn)定性成為紡織及服裝工業(yè)中應(yīng)用最廣泛的種類(lèi)[1,4],其巨大的使用量帶來(lái)的廢棄量引發(fā)的環(huán)境污染問(wèn)題日益嚴(yán)重,廢舊聚酯回收再生迫在眉睫[5]。聚對(duì)苯二甲酸乙二醇酯(PET)是最主要的聚酯材料,由對(duì)苯二甲酸(TPA)和乙二醇(EG)縮合形成對(duì)苯二甲酸乙酯單元后,再通過(guò)酯鍵形成長(zhǎng)鏈。然而,大的苯環(huán)結(jié)構(gòu)和強(qiáng)共價(jià)鍵酯鍵賦予了PET顯著的剛度和強(qiáng)度,尤其是聚酯纖維中聚合物鏈的有序排列方式,使聚酯纖維具有較高的取向度和結(jié)晶度,難以在環(huán)境中被生物降解[6]。人們大多采取破碎、開(kāi)松、紡紗、熱處理等方式制備再生聚酯[7],或者通過(guò)焚燒廢舊聚酯將化學(xué)能轉(zhuǎn)變成熱能[8],或者通過(guò)化學(xué)反應(yīng)將廢舊聚酯分解成TPA和EG單體[9]。
使用化學(xué)法回收廢舊聚酯價(jià)值比較高,主要有胺解法、氨解法、水解法和醇解法[10]。胺解法反應(yīng)速率較慢,并伴有較多副反應(yīng)發(fā)生,很難工業(yè)化生產(chǎn);氨解法解聚時(shí)間較長(zhǎng)且產(chǎn)品提純步驟繁瑣,需要添加催化劑來(lái)提高降解速率,普及困難[11];水解法分為酸性、堿性和中性水解法[12],其中酸性水解法在高溫高壓下能短時(shí)間內(nèi)快速解聚聚酯,但會(huì)消耗大量的濃酸,對(duì)環(huán)境造成污染,且降解產(chǎn)物EG難以回收。使用1.0%的鹽酸,在223~232 ℃、2.3~3.0 MPa條件下處理30 min可將聚酯完全水解[13]。堿性水解聚酯工藝較為簡(jiǎn)單,成本低廉,但堿液會(huì)對(duì)反應(yīng)容器造成腐蝕。200 ℃下,在NaOH溶液中處理25 min可將聚酯水解,TPA的收率為92%[14]。中性水解是利用高溫高壓水蒸氣將聚酯解聚成TPA和EG,環(huán)境污染小,但反應(yīng)條件要求高,工程化應(yīng)用有一定難度。以300 ℃的亞臨界水或超臨界水處理聚酯30 min,TPA收率大于85%,純度接近100%[15]。醇解法主要有甲醇醇解法和EG醇解法[16]。其中,甲醇醇解法反應(yīng)條件比較苛刻,腐蝕性強(qiáng),產(chǎn)物分離成本高,但解聚速率較快[17]。含有ZnO的甲醇溶液在170 ℃條件下處理聚酯15 min,PET的轉(zhuǎn)化率達(dá)97%,得到的對(duì)苯二甲酸二甲酯(DMT)產(chǎn)率為95%[18]。EG醇解法工藝條件相對(duì)溫和,對(duì)設(shè)備要求較低,但解聚的單體純度不高,質(zhì)量不穩(wěn)定,回收率較低[19]。含有ZnMn2O4的EG溶液,在260 ℃、0.5 MPa條件下可將聚酯解聚得到對(duì)苯二甲酸雙羥乙酯(BHET),其收率為92.2%[20]。
本著節(jié)水節(jié)能、高效解聚廢舊聚酯,本文采用水—溶劑熱技術(shù),使用堿性水—甲醇溶液解聚廢聚酯粒料,隨后向反應(yīng)溶液中加入硫酸,使得對(duì)苯二甲酸二鈉鹽酸化,生成TPA析出,并通過(guò)稱(chēng)量殘?jiān)|(zhì)量判定聚酯解聚程度。采用單因素分析法對(duì)NaOH質(zhì)量濃度、浴比、反應(yīng)溫度和反應(yīng)時(shí)間等反應(yīng)條件進(jìn)行優(yōu)化,并用紅外光譜、核磁共振譜和高效液相色譜測(cè)定了TPA的結(jié)構(gòu)及純度。
1 實(shí) 驗(yàn)
1.1 材 料
實(shí)驗(yàn)所用廢舊聚酯(浙江佳人新材料有限公司),由收集
到的廢舊滌綸織物經(jīng)過(guò)破碎、造粒得到黑色顆粒物。實(shí)驗(yàn)用化學(xué)試劑包括氫氧化鈉(NaOH)、甲醇(CH4O)、98%硫酸(H2SO4),均為分析純。實(shí)驗(yàn)用水由UPH-Ⅳ-20T型制水機(jī)制得,電阻率小于5 MΩ·cm。
1.2 方 法
按照技術(shù)路線(xiàn)(圖1),以甲醇為助催化劑,采用單因素分析法依次優(yōu)化NaOH質(zhì)量濃度、浴比、反應(yīng)溫度和反應(yīng)時(shí)間,通過(guò)稱(chēng)量聚酯解聚的殘?jiān)|(zhì)量來(lái)判斷聚酯解聚程度。設(shè)定初始參考條件為:浴比1︰60,反應(yīng)溫度180 ℃,反應(yīng)時(shí)間3 h。首
先,選用NaOH質(zhì)量濃度分別為35、50、80、100 g/L的水—甲醇溶液解聚聚酯;其次,選用優(yōu)化好的NaOH質(zhì)量濃度,在反應(yīng)溫度180 ℃和反應(yīng)時(shí)間3 h條件下,使用浴比分別為1︰10、1︰20、1︰30、1︰40的水—甲醇溶液解聚聚酯;接著,選用優(yōu)化好的NaOH質(zhì)量濃度和浴比,在反應(yīng)時(shí)間3 h條件下,使用反應(yīng)溫度分別為120、140、160 ℃的水—甲醇溶液解聚聚酯;最后,選用優(yōu)化好的NaOH質(zhì)量濃度、浴比和反應(yīng)溫度,使用反應(yīng)時(shí)間分別為1.5、2.0、2.5、3.0 h的水—甲醇溶液解聚聚酯。
具體操作如下:將一定質(zhì)量的NaOH溶解在60 mL甲醇與水混合溶液中(V甲醇︰V水=1︰9),然后按照一定浴比,向混合溶液中加入一定質(zhì)量的聚酯粒料,將混合物轉(zhuǎn)移至100 mL內(nèi)襯聚四氟乙烯的反應(yīng)釜中,將反應(yīng)釜置于均相反應(yīng)器中加熱到一定溫度并恒溫反應(yīng)一段時(shí)間。待反應(yīng)結(jié)束后將反應(yīng)液冷卻至室溫,過(guò)濾得到聚酯殘?jiān)锖笏?、干燥和稱(chēng)重,按照下式計(jì)算聚酯解聚百分比P[21]和聚酯殘余率C。
P/%=m1-m2m1×100(1)
C=1-P(2)
式中:m1為聚酯粒料的初始質(zhì)量;m2為聚酯粒料的殘?jiān)|(zhì)量。
同時(shí),向?yàn)V液中添加一定量的硫酸與對(duì)苯二甲酸二鈉鹽反應(yīng),待TPA絮狀物完全析出后,過(guò)濾得到的TPA用無(wú)水乙醇、水洗滌、干燥并稱(chēng)重,按照下式計(jì)算TPA的產(chǎn)率D[22]。
D/%=N1N2×100(3)
式中:N1為聚酯解聚析出的TPA摩爾數(shù),N2為理論上聚酯100%解聚析出的TPA摩爾數(shù)。
另外,本文嘗試采用蒸餾方法回收EG,理論上當(dāng)溫度達(dá)到64.7 ℃時(shí),首先蒸餾出甲醇,繼續(xù)升溫至100 ℃,水分蒸發(fā)使得硫酸鈉結(jié)晶析出。但在具體實(shí)驗(yàn)中發(fā)現(xiàn),隨著溫度的升高,甲醇、EG和水分都會(huì)蒸發(fā),因而無(wú)法完全將EG分離出來(lái),EG分離提純有待以后解決。
1.3 表 征
采用KBr壓片法,用Nicolet 6700型傅里葉變換紅外光譜儀分析TPA和EG的分子結(jié)構(gòu),掃描范圍400~4 000 cm-1。用Agilent 1290 Infinity Ⅱ型高效液相色譜儀分析TPA的純度,色譜柱選用GL Inertsil ODS-3,流動(dòng)相為0.2%磷酸,流速為1.0 mL/min,紫外檢測(cè)器檢測(cè)波長(zhǎng)為210 nm。采用德國(guó)Bruker 400 MHz核磁共振(NMR)波譜儀測(cè)定TPA的質(zhì)子核磁共振譜氫譜(1H-NMR)和碳譜(13C-NMR),氘代溶劑為氘代二甲基亞砜(DMSO-d6)。用甲醇溶液配制成1 000 μg/mL的色譜級(jí)TPA標(biāo)準(zhǔn)品儲(chǔ)備液,用甲醇溶液稀釋得到質(zhì)量濃度分別為25、50、100、250、500 μg/mL的TPA標(biāo)準(zhǔn)工作液,繪制出TPA的標(biāo)準(zhǔn)工作曲線(xiàn)。將制備得到的TPA樣品配制成100 μg/mL的工作液,測(cè)定TPA的純度。使用標(biāo)準(zhǔn)化視覺(jué)和數(shù)字色彩評(píng)定儀VeriVide DigiEye(Roachelab)測(cè)定商業(yè)TPA和實(shí)驗(yàn)所得TPA的色彩L*、a*、b*值,計(jì)算兩樣品之間的色差。其中,L*指亮度,變化范圍為0~100(0為黑色、100為白色),a*代表紅綠色(正值為紅色、負(fù)值為綠色),b*代表黃藍(lán)色(正值為黃色、負(fù)值為藍(lán)色)。根據(jù)下式計(jì)算兩種樣品之間的色差[23]。
ΔE*ab=[(L*1-L*0)2+(a*1-a*0)2+(b*1-b*0)2]12(4)
式中:下標(biāo)0表示商業(yè)TPA測(cè)試數(shù)據(jù),下標(biāo)1表示實(shí)驗(yàn)所得TPA測(cè)試數(shù)據(jù)。
2 結(jié)果與分析
2.1 聚酯解聚工藝優(yōu)化分析
研究表明,使用氫氧化鈉親核試劑攻擊聚酯中的羰基,會(huì)使得酯鍵斷裂生成對(duì)苯二甲酸二鈉鹽和EG,在濃硫酸作用下對(duì)苯二甲酸二鈉鹽轉(zhuǎn)化成為T(mén)PA[10];而使用甲醇作為親核試劑,會(huì)導(dǎo)致酯鍵斷裂生成DMT和EG[11-12]。堿性水—甲醇混合體系能夠利用水解或醇解兩者反應(yīng)的優(yōu)勢(shì),即堿性條件快速激活酯鍵,降低反應(yīng)活化能,甲醇有效捕獲解聚產(chǎn)生的羧酸鹽,進(jìn)而生成的DMT繼續(xù)與甲醇反應(yīng),進(jìn)一步水解生成TPA和甲醇,從而推動(dòng)反應(yīng)進(jìn)行。這種協(xié)同效應(yīng)可以提高聚酯解聚的速率和TPA收率。另外,混合體系提供了更強(qiáng)的親核攻擊性,甲醇參與可以提高聚酯解聚產(chǎn)物的揮發(fā)性,有助于產(chǎn)物分離和純化。圖2(a)為浴比1︰60、反應(yīng)溫度180 ℃、反應(yīng)時(shí)間3 h條件下,不同質(zhì)量濃度的氫氧化鈉解聚聚酯的殘余率。當(dāng)氫氧化鈉質(zhì)量濃度為35 g/L時(shí),聚酯殘余率為3.7%;氫氧化鈉質(zhì)量濃度增加到50 g/L時(shí),聚酯殘余率降至0.2%,進(jìn)一步增加氫氧化鈉質(zhì)量濃度至80 g/L,聚酯殘余率為0.1%;氫氧化鈉質(zhì)量濃度增加至100 g/L時(shí),聚酯殘余率反而有所增大,其原因可能是氫氧化鈉質(zhì)量濃度過(guò)高,導(dǎo)致其他副反應(yīng)發(fā)生,從而抑制聚酯的解聚[24]??紤]到成本和環(huán)保,本文選用50 g/L的氫氧化鈉進(jìn)行后續(xù)優(yōu)化。圖2(b)為氫氧化鈉50 g/L、反應(yīng)溫度180 ℃、反應(yīng)時(shí)間3 h條件下,不同浴比解聚聚酯的殘余率。某種程度上加大水的用量有利于促進(jìn)聚酯解
聚[25]。當(dāng)浴比為1︰10時(shí),聚酯殘余率為0.47%;浴比增加到1︰20時(shí),聚酯殘余率顯著減少,降至0.13%,進(jìn)一步增大浴比1︰30、1︰40時(shí),聚酯殘余率分別為0.05%和0.07%。浴比1︰40和1︰30得到的聚酯殘?jiān)|(zhì)量很少,均為0.001 g。較浴比1︰30,浴比1︰40所得聚酯殘余率略有所上升的原因可能是用水量增大會(huì)在一定程度上抑制聚酯解聚的速率。為節(jié)約水資源,本文選用浴比1︰20進(jìn)行后續(xù)優(yōu)化。圖2(c)為氫氧化鈉質(zhì)量濃度50 g/L、浴比1︰20、反應(yīng)時(shí)間3 h條件下,不同反應(yīng)溫度解聚聚酯的殘余率。聚酯解聚反應(yīng)屬于吸熱過(guò)程,升高溫度將會(huì)增強(qiáng)聚酯解聚反應(yīng)的內(nèi)聚能,加大聚酯與溶液的接觸效率[26],加速聚酯鏈段的遷移能力[27],提高聚酯解聚效率和TPA的產(chǎn)率[28]。當(dāng)反應(yīng)溫度為120 ℃時(shí),聚酯殘余率為39.47%;增加反應(yīng)溫度到140 ℃時(shí),聚酯解聚率殘余率降至4.5%;繼續(xù)升高溫度至160 ℃,殘余率為0.57%。故本文選用160 ℃優(yōu)化反應(yīng)時(shí)間。圖2(d)為氫氧化鈉質(zhì)量濃度50 g/L、浴比1︰20、反應(yīng)溫度160 ℃條件下,不同反應(yīng)時(shí)間解聚聚酯的殘余率。當(dāng)反應(yīng)時(shí)間為1.5 h時(shí),聚酯殘余率為5%;延長(zhǎng)反應(yīng)時(shí)間至2 h,聚酯殘余率降至1.27%;反應(yīng)時(shí)間2.5 h時(shí),聚酯殘余率為0.87%;反應(yīng)時(shí)間為3 h時(shí),聚酯殘余率變化不大為0.57%。其原因可能是隨著反應(yīng)時(shí)間的延長(zhǎng),雖然會(huì)發(fā)生副反應(yīng),但溶液中的堿和甲醇促使聚酯解聚并使對(duì)苯二甲酸二鈉鹽析出[23]。反應(yīng)時(shí)間為2.5、3 h時(shí),聚酯殘余率均小于1%,為節(jié)約時(shí)間選用2.5 h。
綜上所述,聚酯粒料堿性水—甲醇溶液解聚的最佳工藝條件為:氫氧化鈉質(zhì)量濃度50 g/L、浴比1︰20、反應(yīng)溫度160 ℃、反應(yīng)時(shí)間2.5 h,聚酯殘余率為0.87%。由式(1)計(jì)算得到聚酯解聚百分比P為99.13%。聚酯結(jié)構(gòu)單元摩爾質(zhì)量為192 g/mol,TPA的摩爾質(zhì)量為166.13 g/mol,理論上將3 g聚酯100%轉(zhuǎn)化為T(mén)PA可以得到2.591 6 g(0.015 6 mol)。本實(shí)驗(yàn)廢聚酯粒料解聚得到2.458 7 g(0.014 8 mol)的TPA,由式(3)計(jì)算出TPA產(chǎn)率D為94.9%。
本文將廢聚酯粒料解聚回收TPA與文獻(xiàn)進(jìn)行了比較,如表1所示。文獻(xiàn)中使用的原料大多為廢舊聚酯纖維或滌棉織物,化學(xué)試劑多為氫氧化鈉、氫氧化鋰、氫氧化鈣、乙二醇和四氫呋喃等,反應(yīng)溫度范圍在60~270 ℃,反應(yīng)時(shí)間在0.42~8 h,對(duì)苯二甲酸產(chǎn)率為65~100%。由表1可以看出,本實(shí)驗(yàn)用堿性水—甲醇溶液160 ℃處理聚酯粒料2.5 h,TPA產(chǎn)率94.9%,在節(jié)能和效率方面具有一定優(yōu)勢(shì)。
2.2 對(duì)苯二甲酸、乙二醇分子結(jié)構(gòu)分析
圖3分別為解聚產(chǎn)物所得粉末和水解液的傅里葉變換紅外光譜圖。由圖3(a)所得粉末產(chǎn)物與文獻(xiàn)[26]中標(biāo)準(zhǔn)品對(duì)苯二甲酸紅外光譜曲線(xiàn)非常吻合,其中,3 064 cm-1處為聚酯芳香環(huán)上的羥基—OH非對(duì)稱(chēng)伸縮振動(dòng)吸收峰;2 667、2 552 cm-1處為芳香環(huán)羥基—OH對(duì)稱(chēng)伸縮振動(dòng)吸收峰[36];2 977、2 823 cm-1處對(duì)應(yīng)著C—H對(duì)稱(chēng)、不對(duì)稱(chēng)伸縮振動(dòng)吸收峰;1 964、1 834、880 cm-1處為對(duì)稱(chēng)p-取代芳香環(huán)的特征吸收峰;1 687 cm-1處為碳基CO特征吸收峰;1 575、1 510 cm-1處由苯環(huán)CC伸縮振動(dòng)吸收峰引起[25];1 425、1 286、1 137、1 113、1 019、937 cm-1處多個(gè)峰均由C—O酯鍵吸收峰引起[36-37];783、731、570、528 cm-1處可歸屬為芳香環(huán)C—H伸縮振動(dòng)吸收
峰[38],表明回收得到粉末應(yīng)為T(mén)PA。由圖3(b)可知,3 346 cm-1處寬峰為羥基—OH伸縮振動(dòng)吸收峰[9],1 638 cm-1處峰由—CH2彎曲振動(dòng)與C—OH面內(nèi)彎曲振動(dòng)吸收引起[39],1 192、1 095、1 016 cm-1處峰由C—OH伸縮振動(dòng)與CH2面內(nèi)搖擺振動(dòng)吸收引起[38],1 052 cm-1處峰為羥基—OH彎曲振動(dòng)吸收峰[40]。然而,在3 000~2 800 cm-1未檢測(cè)到乙二醇—CH2伸縮振動(dòng)吸收峰[39],860 cm-1處也未檢測(cè)出—CH2面內(nèi)彎曲振動(dòng)吸收峰[41],這可能是由于蒸餾溶液中雖然含有EG成分,但含量非常低。
2.3 對(duì)苯二甲酸分子空間結(jié)構(gòu)分析
為進(jìn)一步驗(yàn)證TPA結(jié)構(gòu),本文采用核磁共振氫譜和碳譜對(duì)TPA中的元素H和C空間結(jié)構(gòu)位置進(jìn)行了分析,結(jié)果如圖4所示。本實(shí)驗(yàn)所得產(chǎn)物對(duì)苯二甲酸與文獻(xiàn)[25]中標(biāo)準(zhǔn)品TPA的核磁共振氫譜和碳譜基本一致。由圖4(a)氫譜可知,化學(xué)位移2.50 ppm為氘代溶劑DMSO的峰,相應(yīng)水的峰對(duì)應(yīng)化學(xué)位移3.34 ppm?;瘜W(xué)位移8.04、13.29 ppm分別對(duì)應(yīng)著芳香苯環(huán)(記為1)和羥基(記為2)的H質(zhì)子[30]。由圖4(b)碳譜可知,化學(xué)位移39.52 ppm是氘代溶劑DMSO的峰,化學(xué)位移129.53、134.53、166.76 ppm分別對(duì)應(yīng)著芳香環(huán)(記為3)、季芳環(huán)(記為2)、羰基碳原子(記為1)[25]。結(jié)合紅外光譜結(jié)果可確定,聚酯解聚產(chǎn)物主要成分為T(mén)PA,核磁共振譜圖中沒(méi)有其他雜峰,表明解聚產(chǎn)物TPA純度較高。
2.4 對(duì)苯二甲酸純度分析
圖5為T(mén)PA標(biāo)準(zhǔn)品的標(biāo)準(zhǔn)工作曲線(xiàn)和TPA樣品及標(biāo)準(zhǔn)品的液相色譜圖。由圖5(a)TPA標(biāo)準(zhǔn)品標(biāo)準(zhǔn)工作曲線(xiàn)可知,TPA質(zhì)量濃度電信號(hào)與其質(zhì)量濃度滿(mǎn)足方程:A=24.54×B+11.17,R2=0.999 9,當(dāng)TPA質(zhì)量濃度在25~500 μg/mL內(nèi),具有良好的線(xiàn)性相關(guān)。使用質(zhì)量濃度100 μg/mL的色譜級(jí)TPA標(biāo)準(zhǔn)品與TPA樣品進(jìn)行對(duì)比分析,由圖5(b)液相色譜圖可知,TPA樣品與標(biāo)準(zhǔn)品的保留時(shí)間所對(duì)應(yīng)的峰值一致,在保留時(shí)間14.27 min出現(xiàn)TPA的特征峰。TPA樣品的峰面積為2 231.75 nriu,標(biāo)準(zhǔn)品的峰面積為2 465.17 nriu,根據(jù)峰面積可計(jì)算得到TPA的純度為90.53%,這可能是由于所得產(chǎn)物TPA中含有微量的有機(jī)染料、甲醇或者聚酯解聚過(guò)程中產(chǎn)生的其他低聚物[42]。
2.5 對(duì)苯二甲酸色差分析
圖6為T(mén)PA標(biāo)準(zhǔn)品與本實(shí)驗(yàn)所得TPA樣品的L*、a*、b*色度坐標(biāo)。與TPA標(biāo)準(zhǔn)品相比,本實(shí)驗(yàn)所得TPA樣品的L*值由94.37減小至86.12,表明樣品亮度變暗,灰度增加;a*值由-0.1增加至3.54,表明樣品由綠變得更紅;b*值由1.14增加至14.38,表明樣品變得更黃。由式(4)計(jì)算出兩者
的色差ΔE*ab為16.02,遠(yuǎn)大于1,肉眼可以分辨出兩者的顏色差異[23],從光學(xué)照片也可看出兩者顏色有較大差異,可能是由于廢聚酯中染料經(jīng)高溫高壓水熱處理及酸氧化而引起的顏色變化。
3 結(jié) 論
本文采用水—溶劑熱技術(shù),以堿性水—甲醇溶液解聚廢聚酯粒料,用硫酸析出TPA,通過(guò)稱(chēng)量聚酯解聚的殘?jiān)|(zhì)量,優(yōu)化了廢聚酯解聚條件參數(shù):氫氧化鈉質(zhì)量濃度50 g/L、浴比1︰20、反應(yīng)時(shí)間2.5 h和反應(yīng)溫度160 ℃,聚酯解聚百分比為99.13%,TPA產(chǎn)率為94.9%。采用傅里葉變換紅外光譜、核磁共振氫譜和碳譜及高效液相色譜對(duì)比了TPA與標(biāo)準(zhǔn)品的分子結(jié)構(gòu),并計(jì)算了其純度(90.53%);采用標(biāo)準(zhǔn)化視覺(jué)和數(shù)字色彩評(píng)定儀分析了TPA標(biāo)準(zhǔn)品與實(shí)驗(yàn)所得TPA樣品的色差(16.02)。本文研究廢聚酯優(yōu)化條件可為工業(yè)規(guī)模生產(chǎn)提供重要參考,有助于提高生產(chǎn)效率、降低成本,具有重要的實(shí)際應(yīng)用價(jià)值。本研究提供了一種高效解聚廢聚酯回收對(duì)苯二甲酸的方法,有助于減少?gòu)U聚酯纖維對(duì)環(huán)境的影響,推動(dòng)了循環(huán)經(jīng)濟(jì)的發(fā)展。然而,也存在不足之處,所得TPA與標(biāo)準(zhǔn)品存在較大色差,并含有其他雜質(zhì),需要進(jìn)一步研究提純方法。另外,所得水解液含有EG,但含量過(guò)少故無(wú)法與溶液分離,需要進(jìn)一步解決。
《絲綢》官網(wǎng)下載
中國(guó)知網(wǎng)下載
參考文獻(xiàn):
[1]ATHANASOPOULOS P, ZABANIOTOU A. Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review[J]. Science of the Total Environment, 2022(834): 155387.
[2]TRAN N P, GUNASEKARA C, LAW D W, et al. Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste[J]. Journal of Sustainable Cement-Based Materials, 2022, 11(1): 28-42.
[3]STANESCU M D. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone[J]. Environmental Science and Pollution Research, 2021, 28(12): 14253-14270.
[4]錢(qián)蔚然, 徐平華, 王來(lái)力. 聚酯纖維回收再利用及環(huán)境影響評(píng)價(jià)進(jìn)展綜述[J]. 現(xiàn)代紡織技術(shù), 2021, 29(1): 22-26.
QIAN W R, XU P H, WANG L L. Review on polyester fiber recycling and progress of its environmental impact assessment[J]. Advanced Textile Technology, 2021, 29(1): 22-26.
[5]姜濤, 蔡宇凌, 周安展. 聚酯回收再生產(chǎn)業(yè)綠色發(fā)展模型構(gòu)建及實(shí)踐[J]. 現(xiàn)代化工, 2022, 42(2): 45-50.
JIANG T, CAI Y L, ZHOU A Z. Construction and practice of green development innovation model for spent polyester recycling industry[J]. Modern Chemical Industry, 2022, 42(2): 45-50.
[6]PALACIOS M C, VAN D M Y, SEIDE G. Analysis of the polyester clothing value chain to identify key intervention points for sustainability[J]. Environmental Sciences Europe, 2021, 33(1): 1-25.
[7]MOHAMED E W, MOHAMED E F, ABDESLAM E B, et al. Thermo physical characterization of sustainable insulation materials made from textile waste[J]. Journal of Building Engineering, 2017(12): 196-201.
[8]PARK S H, KIM S H. Poly (ethylene terephthalate) recycling for high value added textiles[J]. Fashion and Textiles, 2014, 1(1): 1-17.
[9]KRATOFIL K L, ZLATA H M, JASENKA J, et al. Evaluation of poly (ethylene-terephthalate) products of chemical recycling by differential scanning calorimetry[J]. Journal of Polymers and the Environment, 2009(17): 20-27.
[10]KOSLOSKI O S C, WOOD Z A, MANJARREZ Y, et al. Catalytic methods for chemical recycling or upcycling of commercial polymers[J]. Materials Horizons, 2021, 8(4): 1084-1129.
[11]GHASEMI M H, NEEKZAD N, AJDARI F B, et al. Mechanistic aspects of poly (ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management[J]. Environmental Science and Pollution Research, 2021, 28(32): 43074-43101.
[12]SINHA V, PATEL M R, PATEL J V. PET waste management by chemical recycling: A review[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25.
[13]IKENAGA K, INOUE T, KUSAKABE K. Hydrolysis of PET by combining direct microwave heating with high pressure[J]. Procedia Engineering, 2016(148): 314-318.
[14]SINGH S, SHARMA S, UMAR A, et al. Recycling of waste poly (ethylene terephthalate) bottles by alkaline hydrolysis and recovery of pure nanospindle-shaped terephthalic acid[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(8): 5804-5809.
[15]MAJA C, ZELJKO K, MOJCA S. Sub-and supercritical water for chemical recycling of polyethylene terephthalate waste[J]. Chemical Engineering Science, 2021(233): 116389.
[16]SIDDIQUI M N, REDHWI H H, AL-ARFAJ A A, et al. Chemical recycling of PET in the presence of the bio-based polymers, PLA, PHB and PEF: A review[J]. Sustainability, 2021, 13(19): 10528.
[17]雷丹丹, 肖荔人, 陳慶華, 等. 廢聚酯混紡纖維的化學(xué)回收[J]. 精細(xì)石油化工進(jìn)展, 2020, 21(4): 53-57.
LEI D D, XIAO L R, CHEN Q H, et al. Chemical recovery of waste mixed polyester fiber[J]. Advances in Fine Petrochemicals, 2020, 21(4): 53-57.
[18]DU J T, SUN Q, ZENG X F, et al. ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate[J]. Chemical Engineering Science, 2020(220): 115642.
[19]劉洋, 姚響, 楊革生, 等. 中國(guó)廢舊軍服面料回收利用的研究現(xiàn)狀及發(fā)展前景[J]. 現(xiàn)代紡織技術(shù), 2024, 32(1): 119-129.
LIU Y, YAO X, YANG G S, et al. Research progress and development prospects of the fabric recycling of waste military uniforms in China[J]. Advanced Textile Technology, 2024, 32(1): 119-129.
[20]IMRAN M, KIM D H, AL-MASRY W A, et al. Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly (ethylene terephthalate) via glycolysis[J]. Polymer Degradation and Stability, 2013, 98(4): 904-915.
[21]MOHSIN M A, ALNAQBI M A, BUSHEER R M, et al. Sodium methoxide catalyzed depolymerization of waste polyethylene terephthalate under microwave irradiation[J]. Catalysis in Industry, 2018(10): 41-48.
[22]PALIWAL N R, MUNGRAY A K. Ultrasound assisted alkaline hydrolysis of poly (ethylene terephthalate) in presence of phase transfer catalyst[J]. Polymer Degradation and Stability, 2013, 98(10): 2094-2101.
[23]VISINTIN P M, MIMS R W. Di (methylsulphonyl) quinacridone: Synthesis, characterisation and application in nylon[J]. Coloration Technology, 2010, 126(1): 11-17.
[24]江濤, 楊光, 武麗梅. 聚酯廢料化學(xué)解聚新工藝[J]. 重慶大學(xué)學(xué)報(bào)(自然科學(xué)版), 2000, 23(5): 70-73.
JIANG T, YANG G, WU L M. New technology of depolymerising waste PET[J]. Journal of Chongqing University (Nature Science Edition), 2000, 23(5): 70-73.
[25]YANG W S, LIU R, LI C, et al. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid[J]. Waste Management, 2021(135): 267-274.
[26]孫琮皓, 陳湘萍, 卓強(qiáng), 等. 醇?jí)A水解作用下廢舊聚酯瓶的解聚回收利用[J]. 中南大學(xué)學(xué)報(bào), 2018, 25(3): 543-549.
SUN C H, CHEN X P, ZHUO Q, et al. Recycling and depolymerization of waste polyethylene terephthalate bottles by alcohol alkali hydrolysis[J]. Journal of Central South University, 2018, 25(3): 543-549.
[27]GAMERITH C, ZARTL B, PELLIS A, et al. Enzymatic recovery of polyester building blocks from polymer blends[J]. Process Biochemistry, 2017(59): 58-64.
[28]DAS J, HALGERI A B, SAHU V, et al. Alkaline hydrolysis of poly (ethylene terephthalate) in presence of a phase transfer catalyst[J]. Indian Journal of Chemical Technology, 2007, 14(2): 173-177.
[29]SHUKLA S R, HARAD A M. Glycolysis of polyethylene terephthalate waste fibers[J]. Journal of Applied Polymer Science, 2005, 97(2): 513-517.
[30]LI Y t5jnv/p3DAuAeq/0oRgqFa7nZlStXCXjEfWFly5RJHE=Y, YI H L, LI M J, et al. Synchronous degradation and decolorization of colored poly (ethylene terephthalate) fabrics for the synthesis of high purity terephthalic acid[J]. Journal of Cleaner Production, 2022(366): 132985.
[31]ZHANG S, XU W H, DU R C, et al. Cosolvent-promoted selective non-aqueous hydrolysis of PET wastes and facile product separation[J]. Green Chemistry, 2022, 24(8): 3284-3292.
[32]KUMAGAI S, HIRAHASHI S, GRAUSE G, et al. Alkaline hydrolysis of PVC-coated PET fibers for simultaneous recycling of PET and PVC[J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 439-449.
[33]NAHAR S S, RAHAMAN M S, SAMADDER R, et al. A modified hydrolysis method of decolorizing reactive-dyed polycotton waste fabric and extraction of terephthalic acid: A perspective to reduce textile solid waste[J]. Advances in Polymer Technology, 2022(1): 1-15.
[34]VALH J V, VONCINA B, LOBNIK A, et al. Conversion of polyethylene terephthalate to high-quality terephthalic acid by hydrothermal hydrolysis: The study of process parameters[J]. Textile Research Journal, 2020, 90(13/14): 1446-1461.
[35]劉志陽(yáng), 官軍, 顧日強(qiáng), 等. 密實(shí)化方式對(duì)廢棄聚酯紡織品的醇解及酯交換產(chǎn)物的影響[J]. 現(xiàn)代紡織技術(shù), 2023, 31(1): 123-129.
LIU Z Y, GUAN J, GU R Q, et al. Effects of densification methods on glycolysis and transesterification products of waste polyester textiles[J]. Advanced Textile Technology, 2023, 31(1): 123-129.
[36]ISSAM A M. A new approach to obtain kevlar-49 from PET waste bottles[J]. Research on Chemical Intermediates, 2014, 40(8): 3033-3044.
[37]STOSKI A, VIANTE M F, NUNES C S, et al. Oligomer production through glycolysis of poly (ethylene terephthalate): Effects of temperature and water content on reaction extent[J]. Polymer International, 2016, 65(9): 1024-1030.
[38]MOGHBELI M R, NAMAYANDEH S, HASHEMABADI S H. Wet hydrolysis of waste polyethylene terephthalate thermoplastic resin with sulfuric acid and cfd simulation for high viscous liquid mixing[J]. International Journal of Chemical Reactor Engineering, 2011, 8(1): 1-15.
[39]于宏偉, 李研, 田野, 等. 乙二醇?xì)滏I作用二維紅外光譜研究[J]. 精細(xì)石油化工進(jìn)展, 2017, 18(2): 50-53.
YU H W, LI Y, TIAN Y, et al. Study on hydrogen bonding of ethylene glycol by two-dimensional infrared spectroscopy[J]. Advances in Fine Petrochemicals, 2017, 18(2): 50-53.
[40]吳鳳芹, 聶天琛, 姚超, 等. 乙二醇溶劑熱法制備納米TiO2[J]. 化工新型材料, 2008, 431(11): 39-41.
WU F Q, NIE T C, YAO C, et al. Preparation of nano TiO2 by glycol solvothermal method[J]. New Chemical Materials, 2008, 431(11): 39-41.
[41]王興原, 費(fèi)美麗, 陳紀(jì)忠. 原位紅外光譜研究聚對(duì)苯二甲酸乙二醇酯(PET)醇解反應(yīng)過(guò)程[J]. 高?;瘜W(xué)工程學(xué)報(bào), 2013, 27(1): 58-64.
WANG X Y, FEI M L, CHEN J Z. Study of process of polyethylene terephthalate (PET) methanolysis by FTIR in situ[J]. Journal of Chemical Engineering of Chinese, 2013, 27(1): 58-64.
[42]ISLAM M S, ISLAM Z, HASAN R, et al. Acidic hydrolysis of recycled polyethylene terephthalate plastic for the production of its monomer terephthalic acid[J]. Progress in Rubber Plastics and Recycling Technology, 2023, 39(1): 12-25.
Efficient depolymerisation of waste polyester in alkaline water-methanol solution forterephthalic acid recovery
ZHANG Chi, WANG Xiangrong
XUAN Xiangtao1, ZHANG Hui1, ZHANG Pengfei1, WANG Yi2, FAN Zhengke3, HOU Lin3, FU Weijuan2
(1a. School of Textile Science and Engineering 1b. Key Laboratory of Functional Textile Material and Product Ministry of Education Xi'an Polytechnic University Xi an 710048 China 2. Xi'an Supervision and Inspection Institute of Fiber Textile Xi'an 710068 China 3. Shaanxi Yuanfeng Prosafe Co. Ltd. Xi'an 710025 China
Abstract:
Polyester, especially polyethylene terephthalate (PET), is widely used in the textile and apparel industries due to its excellent thermal, mechanical, and chemical stability. However, with increasing consumption, the environmental impact of waste polyester fibers has become increasingly pronounced. The problem in biodegrading PET poses technical challenges for the recycling and reuse of waste polyester, particularly in terms of efficient depolymerization and the recovery of valuable chemical monomers. Traditional methods for dealing with waste polyester are plagued by low efficiency, high costs, cumbersome processes, and significant environmental pollution. Therefore, developing efficient, economical, and energy-conserving recycling technology for waste polyester is significant for alleviating environmental pressure and achieving resource recycling. This study aims to explore a novel water-solvent thermal technology for the efficient depolymerization of waste polyester and the recovery of terephthalic acid (TPA), providing a new approach for the high-value recycling of waste polyester.
To efficiently depolymerize waste polyester and recover TPA, this study employed water-solvent thermal technology. Waste polyester pellets were treated with an alkaline water-methanol solution under high temperature and pressure, followed by the precipitation of TPA using sulfuric acid. The process conditions for the depolymerization of polyester in the alkaline water-methanol solution were optimized. Various analytical techniques, including Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, and high-performance liquid chromatography (HPLC), were used to characterize the chemical properties and purity of the obtained TPA. Additionally, the VeriVide DigiEye (Roachelab) system was used to evaluate the color characteristics of the product. The use of hydro-solvent thermal technology in this study achieved efficient depolymerization of waste polyester, and the use of sulfuric acid facilitated the efficient precipitation of TPA. The systematic optimization of depolymerization process parameters provided a basis for further improving the recovery rate and reducing costs. The experimental results showed that when waste polyester granules were treated in a mixture containing 50 g/L of sodium hydroxide and 100 mL/L methanol at 160 ℃ for 2.5 hours, with a bath ratio of 1︰20, the recovery rate of TPA was calculated to be 94.9%. The chemical properties of the separated product, as indicated by FTIR, NMR, and HPLC analysis, were highly consistent with the TPA standard, showing a purity of 90.53%. However, the color difference between commercial TPA and the obtained TPA was 16.02 according to the VeriVide DigiEye (Roachelab) system, indicating the presence of a small amount of light yellow impurities.
This study has significant value in practical application and environmental protection. The optimization of depolymerization conditions provides key reference information for the industrial-scale recycling of waste polyester, which can help improve production efficiency and effectively reduce economic costs. Moreover, this study proposes a new method for the efficient recovery of TPA from waste polyester, which not only reduces the potential environmental impact of waste polyester fibers but also promotes the further development of the circular economy. However, there are some limitations in the research process that point the way for future work. For example, the TPA product obtained in the experiment shows a significant color difference compared to the standard one, indicating that the product contains a certain amount of impurities. This necessitates the exploration of more effective purification technologies in future research to improve the purity and quality of the product. Additionally, during the experimental process, ethylene glycol (EG) was observed in the hydrolysate, but due to its low content, it is difficult to achieve effective separation. This issue also needs to be resolved in future research to fully recover and utilize all valuable components in waste polyester. In summary, although this study has made positive progress in the depolymerization of waste polyester and the recovery of TPA, further research and improvement are still needed to overcome current challenges and achieve a more efficient and environmentally friendly recycling process.
Key words:
waste polyester; depolymerization; terephthalic acid (TPA); alkaline water-methanol; sodium hydroxide
作者單位1. 西安工程大學(xué)a. 紡織科學(xué)與工程學(xué)院; b. 功能性紡織材料及制品教育部重點(diǎn)實(shí)驗(yàn)室,西安710048;
2. 西安纖維紡織品監(jiān)督檢驗(yàn)所,西安710068; 3. 陜西元豐新材料科技有限公司,西安710025