








摘要:本研究擬通過模擬Cry毒素創制新型殺蟲蛋白質用于小菜蛾防治,主要利用三維結構模擬及分子對接技術,以前期獲得的抗Cry1Ab抗體為模板設計2個基因工程抗體(GEAb)。其中,具有殺蟲活性的GEAb-GGCC與小菜蛾中腸刷狀邊緣膜囊泡(BBMV)具有較高結合活性,并與Cry1A和Cry1B具有重疊的BBMV結合位點。BBMV免疫沉淀分析鑒定結果顯示,與GEAb-GGCC結合的中腸蛋白質包括氨肽酶N(APN)、V-ATP酶B亞基和polycalin。由于GEAb-GGCC缺乏Cry1A類蛋白質中負責成孔的α-螺旋結構,推測GEAb-GGCC或通過結合小菜蛾中腸受體激活下游信號通路,引起中腸損傷,導致蟲體死亡。
關鍵詞:對靶設計;殺蟲基因工程抗體;分子對接;小菜蛾;Cry毒素
中圖分類號:Q816文獻標識碼:A文章編號:1000-4440(2024)07-1212-08Target design and verification of insecticidal antibody against Plutella xylostellaXIE Yajing YANG Liying HU Xiaodan XU Chongxin ZHANG Xiao GAO Meijing LU Lina ZHONG Jianfeng ZHU Qing LIU Yuan LIU Xianjin
(1.School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;2.Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base of Ministry of Science and Technology/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China)
Abstract:To generate new insecticidal proteins against Plutella xylostella by mimicking Cry toxins, two genetically engineered antibodies (GEAb) were designed by using previously obtained anti-Cry1Ab idiotypic-antibody as template, mainly by three-dimensional structure modeling and molecular docking technology. The insecticidal GEAb-GGCC of GEAb was found to show high affinity to P. xylostella brush border membrane vesicles (BBMV), and had superposed BBMV binding sites with Cry1A and Cry1B. Identification results of BBMV immunoprecipitation analysis showed that the midgut proteins bonded with GEAb-GGCC included aminopeptidases N (APN), B subunit of V-ATPase and polycalin. Because the GEAb-GGCC is lack of α-helix structure which is responsible for pore forming in Cry1A proteins, it is speculated that GEAb-GGCC may activate the downstream signal pathway by binding with the midgut receptors to cause midgut injury, which leads to the death of P. xylostella larva.
Key words:target design;insecticidal genetically engineered antibody;molecular docking;Plutella xylostella;Cry toxin
蘇云金芽孢桿菌(Bacillus thruingiensis, Bt)是目前應用最廣泛的微生物殺蟲劑[1]。隨著轉Bt基因作物在全球的大量種植,Bt抗性風險也引起人們的廣泛關注[2]。傳統的蛋白質工程手段主要通過構建隨機突變體庫篩選改良的突變體[3],還可以通過定向進化等手段來提高酶(蛋白質)的生物活性和特異性等[4-5],如哈佛大學[6]以類鈣黏蛋白作為靶標,對Bt蛋白Cry1Ac進行多輪定向進化,獲得對抗性粉紋夜蛾具有高毒力的突變體。隨著計算機技術的應用,人們借助計算機模擬對蛋白質結合關鍵位點進行理性分析,從而對蛋白質進行計算機設計、分子改造,以改善其生物活性[7-8]。Tinberg等[8]使用計算機對接技術分析洋地黃毒苷與靶標結合界面的關鍵位點,通過突變極大地提高了靶標與配體的親和力。
小菜蛾(Plutella xylostella)屬于鱗翅目害蟲,主要對十字花科蔬菜產生較重危害[9-10]。隨著長期種植轉Bt基因作物和施用Bt農藥(以Cry1Ac為主),導致小菜蛾產生廣泛抗性,目前小菜蛾已成為世界上抗藥性最強的農業害蟲之一[11]。據報道,小菜蛾對Cry1Ac的抗性主要與其受體ATP結合盒亞家族C成員2(ABCC2)和堿性磷酸酶(ALP)的表達減少有關[12]。
本團隊在前期基于噬菌體庫篩選獲得2個模擬Bt蛋白Cry1Ab對稻縱卷葉螟具有殺蟲活性的抗獨特型抗體(B12和G1),本研究主要針對B12和G1抗獨特型抗體進行同源建模并對靶小菜蛾(堿性磷酸酶, ALP)進行分子對接分析,根據對接預測結果進行對靶設計及改造獲得基因工程抗體(GEAb)-GGCC和GEAb-CCGG,并通過篩選獲得對小菜蛾中腸刷狀邊緣膜囊泡(BBMV)具有高結合活性的新型殺蟲基因工程抗體GEAb-GGCC。
1材料與方法
1.1三維建模
利用B12、G1、GEAb-GGCC、GEAb-CCGG、Cry1Ab和小菜蛾ALP的蛋白質氨基酸序列在swissmodel網站(https://swissmodel.expasy.org/)分別進行同源建模。B12、G1、GEAb-GGCC、GEAb-CCGG的模板分別為1f3r、6g8r、4q9r和6g8r,Cry1Ab和ALP的模板分別為1ciy和1zef。選取最優結構用于下一步分子對接。
1.2與小菜蛾ALP分子對接分析
用ZDOCK軟件(https://zdock.umassmed.edu/)對配體(Cry1Ab、B12、G1、GEAb-GGCC和GEAb-CCGG)和受體(ALP)進行分子對接預測,選取最優對接復合物,利用蛋白質結合熱點預測軟件KFC2(https://mitchell-web.ornl.gov/KFC_Server)[13]進行配體/受體的結合熱點區域預測分析。
1.3GEAb的表達及純化
人工合成GEAb-GGCC和GEAb-CCGG的核酸序列,利用Nco I和Not I酶切位點將人工合成的核酸序列連接至pET-26b載體中,在大腸桿菌BL21(DE3)中表達。表達蛋白質經組氨酸(His)標簽純化及脫鹽,利用Easy Protein Quantitative Kit進行蛋白質濃度測定,并進行十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)。
1.4Cry蛋白的準備
Cry1Ac、Cry1Ab和Cry1Ba蛋白用碳酸鈉緩沖液(0.05 mol/L NaHCO3, pH 9.6)溶解后分裝,-80 ℃保存。
1.5小菜蛾BBMV的制備
選取四齡小菜蛾的中腸,用勻漿緩沖液[7 mmol/L 三羥甲基氨基甲烷鹽酸鹽(Tris-HCl),5 mmol/L 乙二醇二乙醚二胺四乙酸(EGTA),300 mmol/L 甘露醇,1 mmol/L 苯甲基磺酰氟(PMSF),pH 7.5]洗滌后,置于勻漿緩沖液中勻漿2~3次;加入MgCl2溶液,4 ℃、6 000 g離心10 min;取上清液至超速離心管中,4 ℃、24 000 g離心30 min;BBMV用4-羥乙基哌嗪乙磺酸(HEPES)緩沖液溶解,分裝后于-80 ℃保存。BBMV濃度用BCA蛋白濃度測定試劑盒進行測定。
1.6Cry毒素和GEAb與BBMV的結合酶聯免疫吸附測定(ELISA)試驗在96孔板中加入100 μL小菜蛾BBMV(50 μg/mL),37 ℃孵育2 h(包被),封閉。加入100 μL(4 μmol/L)抗體(B12、G1、GEAb-GGCC和GEAb-CCGG)或Cry毒素(Cry1Ab和Cry1B)孵育。GEAb等抗體組加入100 μL抗組氨酸(HIS)二抗37 ℃孵育;Cry蛋白組加入100 μL抗Cry1A或Cry1B的兔抗血清孵育,再加入100 μL羊抗兔二抗孵育。用四甲基聯苯胺(TMB)顯色,測定450 nm波長的吸光度(OD450)值。每組3個重復,重復3次。
1.7Cry毒素和GEAb與BBMV的結合生物膜干涉技術(BLI)試驗氨基丙基硅烷(APS)傳感器平衡后,在小菜蛾BBMV(20 μg/mL)溶液中進行5 min(包被)固化,在封閉液中封閉1 min,分別在不同稀釋濃度(0.5~4.0 μmol/L)的Cry1B、GEAb-GGCC和Cry1Ab溶液中進行10 min結合,在封閉液中解離10 min。
1.8GEAb對小菜蛾的生物活性測定
用磷酸鹽溶液(PBS)分別對純化的B12、G1、GEAb-GGCC、GEAb-CCGG和Cry1Ab溶液進行2倍梯度稀釋。每個皿中加入1 mL上述稀釋的蛋白質溶液,晾干后,挑入30只小菜蛾2齡幼蟲。在飼喂3 d、5 d后,進行觀察并記錄試蟲死亡數。每組3個重復,重復3次。死亡率=死亡數/小菜蛾總數×100%。
1.9Cry1類毒素與GEAb-GGCC的BBMV競爭ELISA試驗對Cry1類毒素(Cry1Ab、Cry1B和Cry1Ac)(500 mg/mL)進行2倍梯度稀釋后,與等體積的GEAb-GGCC(終濃度2 μmol/L)混勻,37 ℃孵育2 h。在96孔板上用100 μL小菜蛾BBMV包被,封閉過夜。分別加入100 μL上述Cry1類毒素與GEAb-GGCC的混合物孵育2 h;加入100 μL抗His二抗孵育2 h;用四甲基聯苯胺顯色,測定OD450。每組3個重復,重復3次。
1.10GEAb-GGCC的小菜蛾BBMV結合蛋白質的鑒定BBMV免疫沉淀:將GEAb-GGCC與小菜蛾BBMV在冰上孵育12 h;將混合物于4 ℃、16 000 g 離心1 h,沉淀用1 mL溶解緩沖液[50 mmol/L PBS, pH 7.4;1 mmol/L 乙二胺四乙酸(EDTA), pH 7.4;1 mmol/L MgSO4;10%甘油;2% 3-(3-(膽酰胺丙基)二甲基氨基丙基)-1-丙磺酸內鹽(CHAPS);1 mmol/L PMSF]重懸后,冰上孵育1 h。4 ℃、16 000 g 離心1 h,取上清液,加入DynabeadsHis-Tag 磁珠,冰上孵育過夜。混勻后,將裝有磁珠的離心管置于磁力架上,吸去上清液。用Binding/Wash buffer (50 mmol/L PBS, 150 mmol/L NaCl, pH 7.4)重懸后,清洗4次。將磁珠重懸于50 μL電泳加樣緩沖液中,煮沸后用于SDS-PAGE。
肽指紋質譜(PMF)分析:將相應條帶切膠后用胰酶消化,用超高效液相色譜法/串聯質譜分析,使用Mascot v2.3搜索引擎在美國國家生物技術信息中心(NCBI)小菜蛾數據庫(plutella_db.fa)中進行搜索及注釋。
2結果與分析
2.1GEAb的設計以及與ALP的分子對接分析
在BLAST網站(https://blast.ncbi.nlm.nih.gov/Blast.cgi)上將母本B12和G1分別與Cry1類毒素(Cry1Ab、Cry1Aa和Cry1Ac)進行序列比對,發現B12的重鏈CDR 1區與Cry1類毒素的保守結構域Endotoxin N結構域的序列相似,B12的輕鏈CDR 1和輕鏈CDR 2區與保守結構域Endotoxin C結構域的序列相似; G1的輕鏈CDR 1’區與保守結構域Endotoxin C結構域的序列相似(表1)。基于上述結果,我們設計了2個GEAb (圖1A),并進行了蛋白質序列同源BLAST分析(表1)。
Cry1Ac的受體蛋白小菜蛾ALP,與ABCC2相比,具有較小的相對分子量以及較為可信的結構模型,被選為GEAb分子對接的靶標,用于分子對接(圖1B)。經分子對接預測,Cry1Ab和GEAb分別與小菜蛾ALP上的2個結合區結合,分別為ALP受體結合區Ⅰ(W53)和ALP受體結合區Ⅱ(A409、Y411、Y433)(圖2)。經預測,GEAb-GGCC與ALP受體結合的熱點部位較母體(B12、G1)有所增加,包括重鏈CDR 1、重鏈CDR 2、重鏈CDR 3和輕鏈CDR 2(圖2),推測GEAb-GGCC與ALP的結合活性更高。
2.2GEAb對小菜蛾的BBMV結合活性驗證
GEAb-GGCC和GEAb-CCGG與小菜蛾BBMV的結合力利用ELISA篩選,結果表明,GEAb-GGCC具有較高的BBMV結合活性(圖3B)。用小菜蛾BBMV結合BLI的試驗對GEAb-GGCC進行親和力測定,確定GEAb-GGCC對BBMV具有較高親和力[親和力常數(KD)=12.8 nmol/L],且與Cry1Ab (KD=127.10 nmol/L)相比,GEAb-GGCC對BBMV的親和力高(圖3C、圖3D)。GEAb對小菜蛾的生物活性測定結果顯示,3 d時GEAb-GGCC對小菜蛾的致死率較母本B12、G1高,5 d時GEAb-GGCC的致死率可達95%(圖4)。
2.3GEAb-GGCC與Cry1類蛋白質有重疊的BBMV結合位點采用間接競爭ELISA驗證GEAb-GGCC是否與Cry1類蛋白質有重疊的BBMV結合位點。隨著Cry1類蛋白質(Cry1Ab、Cry1Ac和Cry1Ba)的添加濃度的增高,小菜蛾BBMV與GEAb-GGCC的結合被逐步抑制(圖5),即GEAb-GGCC與Cry1類蛋白質有重疊的BBMV結合位點,初步確定GEAb-GGCC通過模擬Cry1Ba、Cry1Ab和Cry1Ac毒素與BBMV結合。在添加Cry1Ac和Cry1Ba至高濃度(125 μg/mL)時,對GEAb-GGCC與BBMV結合的抑制率分別可達69.8%和73.6%;在使用Cry1Ab作為競爭對象時,有著相似的抑制率,但需要大約2倍的蛋白質濃度。Cry1Ab、Cry1Ba與Cry1Ac對GEAb-GGCC的半抑制濃度(IC50)分別為89.6 g/mL、37.99 g/mL和49.18 g/mL。
2.4與GEAb-GGCC結合的小菜蛾BBMV蛋白
利用BBMV-pulldown和PMF分析鑒定出18個GEAb-GGCC的BBMV結合蛋白(圖6、表2),其中包括常見的Cry1Ac受體氨肽酶N(APN)和Cry1Ac結合蛋白V-ATP酶B亞基、polycalin,未鑒定到Cry1Ac的常見受體如鈣黏蛋白(CAD)或ABCC2。通過比對,發現與我們前期篩選獲得的GEAb-dVL存在相同的BBMV結合蛋白,如polycalin、肌球蛋白、肌動蛋白和ATP合酶亞基。分析后發現多個線粒體中的蛋白質也與GEAb-GGCC結合,這與前期獲得的關于GEAb-dVL[14]的研究結果類似,即多個線粒體中的蛋白質與GEAb-dVL結合。
2.5GEAb-GGCC與小菜蛾APN3和APN5的分子對接預測分析小菜蛾APN3經驗證為Cry1Ac的中腸功能受體,且與Cry1Ac抗性相關[12]。在Cry1Ac抗性小菜蛾品系(如DBM1Ac-R、NIL-R、SZ-R和SH-R等品系)中,APN3等Bt受體的相對表達量下調,但與此同時上調了APN5等同源非Bt受體基因的相對表達量。分子對接預測結果顯示,GEAb-GGCC分別可與小菜蛾APN3和APN5結合,但GEAb-GGCC與小菜蛾APN3的結合區與Cry1Ac不同,Cry1Ac僅與APN3結合(圖7)。
3討論
我們對小菜蛾ALP進行殺蟲蛋白的對靶設計,并篩選獲得了1個新型的殺蟲基因工程抗體GEAb-GGCC,主要由母本(抗Cry1Ab的抗獨特型抗體)G1和B12的重鏈、輕鏈重組而成。對GEAb-GGCC、Cry1Ac與小菜蛾ALP進行分子對接比對,預測結果表明GEAb-GGCC與Cry1Ac具有相似的受體結合區,GEAb-GGCC或可與小菜蛾BBMV結合。與預測結果相似,GEAb-GGCC可以識別小菜蛾中腸BBMV中Cry1A/Cry1B的結合位點,并通過與BBMV結合導致蟲體的死亡。
在Cry1A類蛋白質的結構中,結構域Ⅰ的α-螺旋結構對殺蟲毒性至關重要 [15-16]。因此,結構域Ⅰ中部分氨基酸的替換可導致Cry蛋白毒性喪失,并且去除結構域Ⅰ的Cry1Ab也喪失了對小菜蛾幼蟲的毒性。由于GEAb-GGCC缺乏α-螺旋的穿孔結構,以及GEAb-GGCC與BBMV受體的結合區和Cry1Ab蛋白與BBMV受體的結合區的結構相似性,我們推測GEAb-GGCC與BBMV結合蛋白質的作用,和Cry1Ab與鈣黏蛋白受體的結合類似,通過與受體結合時激活細胞死亡途徑來發揮其殺蟲活性。
GEAb-GGCC可與Cry1類蛋白質競爭,印證了其能夠識別小菜蛾BBMV中Cry1A和Cry1B的結合位點。GEAb-GGCC不能完全競爭Cry1Ac或Cry1Ab的結果,說明在這個Cry1Ab/Cry1Ac結合位點群中存在多個結合位點,并且只有其中一部分被GEAb-GGCC識別。
GEAb-GGCC在小菜蛾中腸中的候選受體包含氨肽酶APN2、APN3、APN4a和APN5,以及其他已報道的具有Cry1A結合位點的BBMV蛋白,如V-ATP酶B亞基、polycalin和熱激蛋白60。分子對接預測結果顯示,GEAb-GGCC可與小菜蛾APN3、APN5結合。這與前期獲得的殺蟲蛋白GEAb-dVL的結果類似,經預測GEAb-dVL也可與小菜蛾APN3和APN5結合,且GEAb-dVL對表達APN5的sf9昆蟲細胞具有細胞毒性(數據未發表),提示GEAb-GGCC或與GEAb-dVL類似,通過與多個中腸受體(如APN)結合,誘導中腸損傷、蟲體死亡。
參考文獻:
[1]FIUZA L, POLANCZYK R, CRICKMORE N. Bacillus thuringiensis and Lysinibacillus sphaericus[M]. Switerland:Springer, Cham,2017.
[2]TABASHNIK B E, CARRIèRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017,35(10):926-935.
[3]GUPTA R D, GOLDSMITH M, ASHANI Y, et al. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication[J]. Nature Chemical Biology,2011,7(2):120-125.
[4]WILLIAMS G J, ZHANG C, THORSON J S. Expanding the promiscuity of a natural product glycolsyl-transferase by directed evolution[J]. Nature Chemical Biology,2007,3(10):657-662.
[5]BADRAN A H, GUZOV V M, HUAI Q, et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance[J]. Nature,2016,533:58-63.
[6]LEE C C, PERCHIACCA J M, TESSIER P M. Toward aggregation-resistant antibodies by design[J]. Trends in Biotechnology,2013,31(11):612-620.
[7]吳梧桐. 蛋白質工程技術與新型生物催化劑設計[J]. 藥物生物技術,2004,11(1):1-6.
[8]TINBERG C E, KHARE S D, DOU J, et al. Computational design of ligand-binding proteins with high affinity and selectivity[J]. Nature,2013,501(7466): 212-216.
[9]LI Z, ZALUCKI M P, YONOW T, et al. Population dynamics and management of diamondback moth(Plutella xylostella) in China: the relative contributions of climate, natural enemies and cropping patterns [J]. Bulletin of Entomological Research,2016,106(2):197-214.
[10]FURLONG M J, WRIGHT D J, DOSDALL L M. Diamondback moth ecology and management: pro-blems, progress, and prospects [J]. Annual Review of Entomology,2013,58:517-541.
[11]JURAT-FUENTES L, HECKEL F. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis[J]. Annual Review of Entomology,2021,66:121-140.
[12]GUO Z, KANG S, SUN D, et al. MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host[J]. Nature Communication,2020,11:3003.
[13]ZHU X, MITCHELL J C. KFC2:a knowledge-based hot spot prediction method based on interface solvation, atomic density and plasticity features[J]. Proteins,2011,79:2671-2683.
[14]XIE Y J, XU C X, GAO M J, et al. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth(Plutella xylostella) [J]. Pest Management Science,2021,77(10):4593-4606.
[15]CHEN X J, CURTISS A, ALCANTARA E, et al. Mutations in domain I of Bacillus thuringiensis d-endotoxin CryIAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles[J]. Journal of Biological Chemistry,1995,270:6412-6419.
[16]WU D, ARONSON A I. Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity[J]. Journal of Biological Chemistry,1992,267:2311-2317.
(責任編輯:陳海霞)