
















摘" 要: 超聲振動系統主要由超聲換能器和超聲復合加工電源組成。其中超聲換能器在加工過程中受到多種因素影響,會發生諧振頻率漂移現象;超聲復合加工電源需要輸出對應頻率的電信號,保證超聲振動系統的穩定工作。為避免超聲換能器損壞,設計一種基于BP神經網絡算法的控制模型,通過分析超聲電源運行歷史數據來實現對超聲電源輸出頻率的控制。利用Multisim對電路進行仿真,并通過試驗采集理論諧振頻率在25 kHz的超聲換能器穩定工作時超聲復合加工電源的輸出信號,通過Matlab建模仿真來驗證BP神經網絡模型的控制精度和可靠性。結果表明,產生的模擬輸出與實際輸出頻率最大誤差不超過5%,有助于超聲復合加工電源的穩定工作。
關鍵詞: BP神經網絡; 超聲換能器; 超聲復合加工電源; 頻率追蹤; 電源控制; 高頻逆變
中圖分類號: TN86?34; TP391.9" " " " " " " " " "文獻標識碼: A" " " " " " " " " " "文章編號: 1004?373X(2024)10?0159?05
Ultrasonic power frequency tracking technology based on BP neural network algorithm
Abstract: The ultrasonic vibration system is composed of the ultrasonic transducer and the power supply for ultrasonic composite processing. During the machining process, the ultrasonic transducer is influenced by various factors that can lead to resonance frequency drift. The ultrasonic composite processing power supply needs to output electrical signals corresponding to the frequency to ensure the stable operation of the ultrasonic vibration system. In order to avoid damage to the ultrasonic transducer, a control model based on BP neural network algorithm is designed, which can control the output frequency of the ultrasonic power supply by analyzing the operating history data of the ultrasonic power supply. The circuit simulation is conducted by means of Multisim, and the output signal of the ultrasonic composite processing power supply when the theoretical resonant frequency of the ultrasonic transducer is stable at 25 kHz is collected by the experiments." The Matlab simulation modeling is conducted to verify the control accuracy and reliability of the BP neural network model. The results show that the maximum error between the generated analog output and the actual output frequency does not exceed 5%, which is helpful for the stable operation of the ultrasonic composite processing power supply.
Keywords: BP neural network; ultrasonic transducer; ultrasonic composite processing power supply; frequency tracking; power control; high frequency inverter
0" 引" 言
鈦合金材料、碳纖維復合材料等難加工材料在高端航空領域的使用占比快速提升[1],但對此類材料使用傳統加工方法時存在加工效率低、工件易破碎、刀具壽命低、加工質量差等問題。而超聲復合加工相較于傳統加工方式具有切削力小、切削熱低、工件表面質量高、刀具耐用度高等工藝優勢,特別適合于加工碳纖維復材、鈦合金等各種難加工材料[2]。超聲復合加工是將超聲振動系統與傳統機械加工方式相結合,以獲得較好的加工效果。超聲振動系統主要由超聲換能器和超聲復合加工電源兩個部分組成[3]。……