999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一種求解時間分數階非線性拋物型方程的等階混合有限元

2024-08-23 00:00:00唐瑜嶺胡朝浪楊榮奎馮民富
四川大學學報(自然科學版) 2024年4期
關鍵詞:有限元

摘 要: 為數值求解時間分數階非線性拋物型方程,本文提出了一種k 次等階混合有限元.為獲得有限元的完全離散格式,本文在時間方向上考慮經典L1 格式、在空間方向上使用基于局部投影的穩定混合有限元. 本文定義了混合投影并得到了有限元的誤差估計. 數值算例驗證了理論結果.

關鍵詞: 混合有限元; 時間分數階非線性拋物型方程; 逼近

中圖分類號: O241. 82 文獻標志碼: DOI: 10. 19907/j. 0490-6756. 2024. 041004

Abstract: In this paper, we propose a k-th equal-order mixed finite element for the numerical solutions of thetime fractional nonlinear parabolic equations. To obtain the fully discrete scheme of finite element, the classicalL1 scheme is used in the time direction and the stabilized mixed finite element method based on local projectionis used in the spatial direction. We define the mixed projection and give the error estimate for the finiteelement. Numerical examples verify the theoretical results.

Keywords: Mixed finite element; Time fractional nonlinear parabolic equation; Approximation

1 Introduction

Parabolic equations are extensively employedto describe the unsteady physical phenomena suchas the diffusion of molecules in porous medium(air, water, etc). Many problems in science and engineeringcan be described by linear or nonlinearparabolic equations. In particular, time fractionalparabolic equations arise in the cases where thereare spatial or temporal constraints[1]. Unfortunately,only very special cases of these equations can besolved analytically. Therefore, the stable numericalschemes for these equations have long been a hot researchtopic[2-5], in which the mixed finite element isone of the promising methods.

Generally, a mixed finite element method hastwo variational forms, one is the dual mixed finiteelement method, the other is the primal mixedvariational form, which is based on the function spaces H (div;Ω)×L2 ( Ω) and (L2 ( Ω))2 ×H 1 ( Ω),respectively. Note that the velocity element neednot be imposed such high regularity and only needto be square integrable. Based on the primal mixedvariational form, Chen et al. [2] developed a P 20 ?P1mixed finite element method to solve some ellipticproblems. Weng et al. [3] considered the Crank-Nicolson P 20 ?P1 mixed finite element approximationsfor the linear parabolic problems. Shi et al.[4,5]applied a P 20 ?P1 mixed finite element method tosolve the nonlinear parabolic equations and nonlinearSchr?dinger equations. However, the abovementionedfinite element function spaces are so specialthat the inf-sup condition must be strictly satisfied.In this sense, some known and widely used finiteelement spaces are thereby excluded. Meanwhile,it is not easy to construct such mixed finiteelement function spaces in high-dimensional problems.

To overcome these difficulties, some stabilizationmethods have been proposed. The classical stabilizationmethods are Petrov-Galerkin type[6], somesymmetric stabilization methods are proposed[7,8].Subsequently, due to the computationally convenientof equal orders, especially the lowest equal orderpair in parallel processing and multigrid context,a stabilized finite element method based on local projectionis proposed for the Navier-Stokes equations[9]. However, most of these stabilization methodscan be applied only to steady or integral differentialequations rather than fractional differential equations.

Nowadays, many numerical methods havebeen proposed for time fractional equations. In Ref.[10], Gao and Sun constructed a compact differencemethod to solve the fractional sub-diffusionproblems. In this method the L1 scheme is appliedfor the time-fractional derivative and the fourthorderaccuracy compact approximation for the spatialdirection, then the stability and convergence ofthe finite difference scheme in maximum norm areobtained by using the energy method. Jin et al. [11]proposed a finite element method to solve the time fractional diffusion equation with non-smooth initialdata and established optimal with respect to theregularity of the solution error estimates. In Ref.[12], the semi-linear time fractional reaction diffusionequation was considered by using the mixed finiteelement method.

In this paper, we propose a k-th equal-ordermixed finite element for the following time fractionalnonlinear parabolic equation (0 lt; γ lt; 1):

c0 D γt u - Δu + f (u) = g, in Ω × (0,T ]

with the boundary condition u ( x,t ) = 0,on ?Ω ×(0,T ] and initial value u ( x,0) = u0 ( x) in Ω ×{ 0 },where g is a given function, c0 D γt u is the Caputo derivativein time,say,

and Γ ( ? ) is the gamma function. Assume that Ω is abounded domain in R2 with boundary ?Ω. For the reactionterm f (u), we assume that there exists a constantL gt; 0 such that | f '(u) |≤ L,u'≤ L. We proposea (P disk - 1 ) 2 ?P ck mixed finite element approximationand a new (P ck ) 2 ?P ck stabilized mixed finiteelementmethod to solve the equation. We introducea mixed projection and give the error estimates.Moreover, we give some numerical examples toverify the theoretical results.

The rest of this paper is organized as follows.Noting that the velocity p = ?u only needs to besquare integrable, we give a primal mixed formulationin Section 2. In Section 3, we address thestable conforming finite element approximation forthe (P disk - 1 ) 2 ?P ck pair and we give a stabilized finite elementapproximation for the (P ck ) 2 ?P ck pairs, thenwe analyze the error results. In Section 4, numericalexamples are given. In Section 5 we symmarize theobtained results.

2 Stable conforming finite elementfor the ( P disk - 1 ) 2 ?P ck pair

Let Q = (L2 ( Ω) )2 and V = H 10 ( Ω). Settingp = ?u, we get the following primal mixed formula?tion of( 1). It aims to find ( p,u) ∈ Q× V such that

In this paper, a new mixed finite elementmethod is proposed for the time fractional nonlinearparabolic equations, and the existence and uniquenessare obtained. We hav addressed the correspond?ing finite element for the (P disk - 1 ) 2 ?P ck and (P ck ) 2 ?P ck finiteelement pairs and given some numerical examplefor the (P disk - 1 ) 2 ?P ck, (P ck ) 2 ?P ck pairs (k = 1,2)pairs to verify the theoretical results. Obviously,this method can be expanded to the three dimensioncase easily.

References:

[1] Havlin S, Selinger R B, Schwartz M, et al. Randommultiplicative processes and transport in structureswith correlated spatial disorder [J]. Phys Rev Lett,1988, 61: 1438.

[2] Chen S C, Chen H R. New mixed element schemesfor second order elliptic problem [J]. Math NumerSin, 2010, 32: 213.

[3] Weng Z, Feng X, Huang P. A new mixed finite elementmethod based on the Crank-Nicolson schemefor the parabolic problems [J]. Appl Math Model,2012, 36: 5068.

[4] Shi D Y, Yan F N, Wang J J. Unconditional superconvergenceanalysis of a new mixed finite elementmethod for nonlinear Sobolev equation [J]. ApplMath Comput, 2016, 274: 182.

[5] Shi D Y, Yang H J. Unconditionally optimal error estimatesof a new mixed FEM for nonlinearSchr?dinger equations [J]. Adv Comput Math,2019, 45: 3173.

[6] Johnson C, Navert U, Pitkaranta J. Finite elementmethods for linear hyperbolic problems [J]. ComputMeth Appl M, 1984, 45: 285.

[7] Burman E, Hansbo P. Edge stabilization for Galerkinapproximations of convection-diffusion-reaction problems[ J]. Comput Meth Appl M, 2004, 193: 1437.

[8] Codina R. Stabilization of incompressibility and convectionthrough orthogonal sub-scales in finite elementmethods [J]. Comput Meth Appl M, 2000,190: 1579.

[9] Jian L, He Y, Chen Z. A new stabilized finite elementmethod for the transient Navier – Stokes equations[ J]. Comput Meth Appl M, 2007, 197: 22.

[10] Gao G H, Sun Z Z. A compact finite differencescheme for the fractional sub-diffusion equations [J].J Comput Phys, 2011, 230: 586.

[11] Jin B, Lazarov R, Zhou Z. Error estimates for asemi-discrete finite element method for fractional orderparabolic equations [J]. SIAM J Numer Anal,2013, 51: 445.

[12] Li Q, Chen Y, Huang Y, et al. Two-grid methodsfor semi-linear time fractional reaction diffusion equationsby expanded mixed finite element method [J].Appl Numer Math, 2020, 157: 38.

[13] Shi F, Yu J, Li K. A new stabilized mixed finiteelementmethod for Poisson equation based on two localGauss integrations for linear element pair [J]. IntJ Comput Math, 2011, 88: 2293.

[14] Lin Y, Xu C. Finite difference/spectral approximationsfor the time-fractional diffusion equation [J]. JComput Phys, 2007, 225: 1533.

[15] Li D, Liao H L, Sun W, et al. Analysis of L1-GalerkinFEMs for time-fractional nonlinear parabolic problems[ J]. Commun Comput Phys, 2018, 24: 86.

[16] He Y, Jian L. A stabilized finite element methodbased on local polynomial pressure projection for thestationary Navier – Stokes equations [J]. Appl NumerMath, 2008, 58: 1503.

[17] Layton W, Tobiska L. A two-level method withbacktracking for the Navier-Stokes equations [J].SIAM J Numer Anal, 1998, 35: 2035.

(責任編輯: 周興旺)

基金項目: 國家自然科學基金(11971337)

猜你喜歡
有限元
基于擴展有限元的疲勞裂紋擴展分析
非線性感應加熱問題的全離散有限元方法
TDDH型停車器制動過程有限元分析
新型有機玻璃在站臺門的應用及有限元分析
上海節能(2020年3期)2020-04-13 13:16:16
基于I-DEAS的履帶起重機主機有限元計算
基于有限元模型對踝模擬扭傷機制的探討
10MN快鍛液壓機有限元分析
磨削淬硬殘余應力的有限元分析
基于SolidWorks的吸嘴支撐臂有限元分析
箱形孔軋制的有限元模擬
上海金屬(2013年4期)2013-12-20 07:57:18
主站蜘蛛池模板: 国产在线精彩视频二区| 亚洲精品天堂在线观看| 91香蕉国产亚洲一二三区 | 蜜桃视频一区| 日本91在线| 亚洲第一成年人网站| 国产精品久久久久婷婷五月| 米奇精品一区二区三区| 中文字幕亚洲精品2页| 小说 亚洲 无码 精品| 暴力调教一区二区三区| 国产一级毛片网站| 无码网站免费观看| 日韩精品一区二区三区免费在线观看| 日本午夜精品一本在线观看| 无码区日韩专区免费系列| 久久亚洲精少妇毛片午夜无码| 欧美黄网在线| 免费无遮挡AV| 在线观看国产网址你懂的| 久久中文无码精品| 欧美亚洲国产精品久久蜜芽| 99热最新在线| 中文字幕乱码二三区免费| 亚洲成人一区二区| 欧美色香蕉| 免费观看欧美性一级| 日本精品视频| 久久超级碰| 在线看国产精品| 色综合色国产热无码一| 久久成人国产精品免费软件| 色综合久久久久8天国| 国产特一级毛片| 国产办公室秘书无码精品| 18禁黄无遮挡网站| 伊人91在线| 91欧美在线| 9久久伊人精品综合| 久久国产热| 欧美精品亚洲二区| 欧洲熟妇精品视频| 91日本在线观看亚洲精品| 欧美成人区| 香蕉精品在线| 婷婷五月在线视频| 无码 在线 在线| 亚洲码一区二区三区| 国产va免费精品观看| 亚洲天堂网在线播放| 蜜臀av性久久久久蜜臀aⅴ麻豆| 玖玖免费视频在线观看| 又爽又黄又无遮挡网站| 91无码视频在线观看| 亚洲欧美一级一级a| 欧美日本在线播放| 91福利一区二区三区| 伊人久热这里只有精品视频99| 日本人妻丰满熟妇区| 国产成人久视频免费| 国产精品吹潮在线观看中文| 日本高清在线看免费观看| 国产不卡一级毛片视频| 97在线视频免费观看| 国产第一色| 欧美日韩一区二区在线免费观看 | 欧洲av毛片| 国产性爱网站| 国产精品成| 国产福利拍拍拍| 亚洲午夜天堂| 日韩av手机在线| 精品国产乱码久久久久久一区二区| 无码精品国产dvd在线观看9久| 99激情网| 国产一级二级三级毛片| 亚洲无线国产观看| 亚洲男人天堂久久| 毛片久久网站小视频| 亚洲欧美另类中文字幕| 操操操综合网| 97影院午夜在线观看视频|