999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Cs4-SeNPs對BV2小膠質細胞炎癥反應作用及機制

2024-08-22 00:00:00楊妍卿王曉雯趙娜娜張梅陳文芳
青島大學學報(醫(yī)學版) 2024年3期

[摘要]目的探討蟲草多糖功能化納米硒(Cs4-SeNPs)對脂多糖(LPS)誘導BV2小膠質細胞炎癥反應的作用及其可能機制。方法以不同濃度(0.01、0.10、1.00 μmol/L)Cs4-SeNPs作用LPS誘導的BV2小膠質細胞,采用四甲基偶氮唑藍(MTT)法檢測BV2小膠質細胞活力,免疫印跡技術檢測BV2小膠質細胞硒蛋白谷胱甘肽過氧化物酶4(GPX4)蛋白表達,熒光定量PCR技術檢測不同時間(4、8、12 h)BV2小膠質細胞促炎因子環(huán)氧化酶-2(COX-2)和誘導型一氧化氮合酶(iNOS)mRNA表達。結果0.01、0.10、1.00 μmol/L的Cs4-SeNPs對BV2細胞活力無明顯影響。與對照組相比,LPS組GPX4蛋白表達降低(F=25.47,q=6.43,Plt;0.01);0.01、0.10和1.00 μmol/L的Cs4-SeNPs處理組GPX4蛋白表達較LPS組明顯升高(q=5.72~14.07,Plt;0.01),且1.00 μmol/L Cs4-SeNPs作用效果最好(q=6.04~8.35,Plt;0.01)。LPS組COX-2與iNOS mRNA表達較對照組顯著上調(F=25.00、37.34,q=12.18、12.06,Plt;0.001)。1.00 μmol/L Cs4-SeNPs預處理12 h可顯著抑制COX-2基因表達(q=6.10,Plt;0.05);預處理8 和12 h可顯著抑制iNOS mRNA表達(q=4.71、6.97,Plt;0.05)。結論Cs4-SeNPs對LPS誘導的BV2小膠質細胞炎癥反應具有抑制作用,其機制可能與硒蛋白GPX4的調控有關。

[關鍵詞]硒;納米結構;小神經(jīng)膠質細胞;脂多糖類;炎癥;磷脂氫過氧化物谷胱甘肽過氧化物酶;環(huán)氧化酶2

[中圖分類號]R916.3;R322.8[文獻標志碼]A[文章編號]2096-5532(2024)03-0322-05

doi:10.11712/jms.2096-5532.2024.60.094[開放科學(資源服務)標識碼(OSID)]

[網(wǎng)絡出版]https://link.cnki.net/urlid/37.1517.R.20240726.0914.001;2024-07-2617:24:21

Role and mechanism of action of cordyceps polysaccharide-functionalized selenium nanoparticles in inflammatory response of BV2 microglial cellsYANG Yanqing, WANG Xiaowen, ZHAO Nana, ZHANG Mei, CHEN Wenfang(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)

[Abstract]ObjectiveTo investigate the effect of cordyceps polysaccharide-functionalized selenium nanoparticles (Cs4-SeNPs) on lipopolysaccharide (LPS)-induced inflammatory response of BV2 microglial cells and its possible mechanism. MethodsLPS-induced BV2 microglial cells were treated with different concentrations (0.01, 0.10, 1.00 μmol/L) of Cs4-SeNPs. MTT assay was used to measure the viability of BV2 microglial cells; Western blotting was used to measure the protein expression level of the selenoprotein glutathioneperoxidase 4 (GPX4) in BV2 microglial cells, and quantitative real-time PCR was used to measure the mRNA expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in BV2 microglial cells at diffe-rent time points (4, 8, and 12 h).ResultsCs4-SeNPs with a concentration of 0.01, 0.10, and 1.00 μmol/L had no significant in-fluenceon the viability of BV2 cells. Compared with the control group, the LPS group had a significant reduction in the protein expression level of GPX4 (F=25.47,q=6.43,Plt;0.01), and compared with the LPS group, the 0.01, 0.10, and 1.00 μmol/L Cs4-SeNPs treatment groups had a significant increase in the protein expression level of GPX4 (q=5.72-14.07,Plt;0.01), with 1.00 μmol/L Cs4-SeNPs showingthe best effect (q=6.04-8.35,Plt;0.01). Compared with the control group, the LPS group had significant increases in the mRNA expression levels of COX-2 and iNOS (F=25.00,37.34;q=12.18,12.06;Plt;0.001). Pretreatment with 1.00 μmol/L Cs4-SeNPs for 12 h could significantly inhibit the mRNA expression of COX-2 (q=6.10,Plt;0.05), and pretreatment for 8 and 12 h significantly inhibited the mRNA expression of iNOS (q=4.71,6.97;Plt;0.05).ConclusionCs4-SeNPs has an inhibitory effect on LPS-induced inflammatory response in BV2 microglial cells,possibly by regulating the selenoprotein GPX4.

[Key words]selenium; nanostructures; microglia; lipopolysaccharides; inflammation; phospholipid hydroperoxide glutathione peroxidase; cyclooxygenase 2

神經(jīng)退行性疾病的病理特征是神經(jīng)元變性死亡,而神經(jīng)元損傷通常與中樞神經(jīng)系統(tǒng)的炎癥反應密切相關[1-2]。作為中樞神經(jīng)系統(tǒng)中的常駐細胞,小膠質細胞具有監(jiān)測突觸功能狀態(tài)及維持中樞神經(jīng)系統(tǒng)內環(huán)境穩(wěn)態(tài)的功能。但是,過度激活的小膠質細胞會產(chǎn)生大量的促炎因子,例如環(huán)氧化酶-2(COX-2)、誘導型一氧化氮合酶(iNOS)、腫瘤壞死因子-α(TNF-α)和白細胞介素-1β(IL-1β)等,加重神經(jīng)炎癥反應并損傷神經(jīng)元[2-5]。因此,通過抑制小膠質細胞的炎癥反應治療神經(jīng)炎癥是一種有效的神經(jīng)保護策略。硒在中樞神經(jīng)系統(tǒng)參與了運動調節(jié)和學習記憶等功能[6]。硒主要通過硒蛋白發(fā)揮生物功能,硒蛋白可參與免疫細胞的激活、增殖和分化,進而進行免疫調節(jié)[7-8]。納米硒(SeNPs)因為低毒、可降解性以及高生物利用度等優(yōu)點逐漸受到人們關注,而連接多糖基團的SeNPs具有更廣的應用范圍[9-11]。目前已有研究證實,SeNPs可通過調節(jié)炎癥和代謝信號發(fā)揮神經(jīng)元保護作用,但對于多糖基團納米硒在神經(jīng)炎癥中的抗炎作用尚未見報道[12-13]。本研究采用香港理工大學團隊研發(fā)的蟲草多糖功能化納米硒(Cs4-SeNPs),探究其對脂多糖(LPS)誘導的BV2小膠質細胞炎癥反應的影響及其可能機制。

1材料和方法

1.1實驗材料

Cs4-SeNPs(專利號:CN201911215358.5)由香港理工大學黃家興教授團隊提供,以雙蒸水溶解為1.5 mmol/L的儲存液,4 ℃保存。LPS購自美國Sigma公司,以生理鹽水溶解為2.5 g/L的儲存液,-20 ℃保存。3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴鹽(MTT)購自國風生物科技公司,應用0.01 mmol/L的PBS配成5 g/L母液,避光保存。二甲基亞砜(DMSO)購自Solarbio公司。谷胱甘肽過氧化物酶4(GPX4)抗體購自abcam公司,β-actin抗體購自Bioss公司。PAGE凝膠快速制備試劑盒、IgG-HRP二抗、ECL發(fā)光液均購自雅酶公司。PCR逆轉錄試劑盒購自美國TaKaRa公司,SYBRGreen(MasterMix)購自諾唯贊醫(yī)療科技有限公司,PCR擴增引物由青島蔚來生物科技有限公司提供。BV2細胞購自北京市協(xié)和醫(yī)學院細胞資源中心。

1.2實驗方法

1.2.1細胞培養(yǎng)BV2細胞置于含體積分數(shù)0.10胎牛血清、100 U/L青霉素和100 mg/L鏈霉素高糖DMEM培養(yǎng)液,在含體積分數(shù)0.05 CO2的37 ℃細胞培養(yǎng)箱中常規(guī)培養(yǎng)。當細胞生長至80%~90%融合時,接種細胞。

1.2.2MTT法檢測細胞活力將BV2細胞從培養(yǎng)瓶中吹打下來,離心后加入培養(yǎng)液進行細胞計數(shù)。當細胞密度達到8×107/L時,以每孔100 μL接種至96孔板進行培養(yǎng)。待板中細胞達70%融合時加入不同濃度(0.01、0.10、1.00 μmol/L)的Cs4-SeNPs培養(yǎng)24 h。棄掉96孔板中的液體后,每孔加入質量濃度為5 g/L的MTT溶液20 μL,避光培養(yǎng)4 h。隨后棄掉MTT溶液,每孔加入100 μL的 DMSO,放置搖床避光緩慢振蕩10 min使晶體溶解。使用酶標儀檢測490 nm波長處的吸光度值(OD值)。

1.2.3免疫印跡法(Western blot)檢測蛋白表達將BV2細胞接種于12孔板進行培養(yǎng),待細胞生長達到80%融合時進行加藥處理。將細胞分為對照組(A組)、LPS誘導組(B組)、Cs4-SeNPs不同濃度(0.01、0.10、1.00 μmol/L)預處理與LPS共處理組(C組、D組、E組)。LPS誘導24 h后棄去培養(yǎng)液,加裂解液(lysis∶PMSF=99∶1,每孔100 μL)在冰上裂解30 min。將裂解后的細胞從孔板中刮下并收集至EP管中。提取細胞蛋白并用BCA法檢測蛋白濃度,每孔取15 μg蛋白進行十二烷基硫酸鈉聚丙烯酰胺凝膠(SDS-PAGE)電泳,恒壓80 V,恒流300 mA,90 min冰浴轉膜。用1×快速封閉液在室溫下封閉30 min后,加入GPX4一抗,4 ℃搖床孵育過夜。在一抗孵育后使用TBST洗膜3次,每次10 min。加入二抗室溫搖床孵育1 h,TBST洗膜3次,每次10 min。采用ECL化學發(fā)光試劑顯影,Image J軟件分析蛋白條帶,結果以目的蛋白條帶與β-actin條帶灰度值的比值表示。

1.2.4實時熒光定量聚合酶鏈反應(RT-PCR)技術檢測基因mRNA表達接種BV2細胞于12孔板中,待培養(yǎng)達80%融合時進行加藥處理。將細胞分為對照組(A組)、LPS誘導組(B組)、不同時間(4、8、12 h)Cs4-SeNPs(加入最佳濃度1.00 μmol/L)預處理后加LPS共處理6 h組(C組、D組、E組)。藥物處理各組細胞后,采用TRIzol法提取各分組細胞總RNA,使用PCR逆轉錄試劑盒將RNA逆轉錄為cDNA。按照要求配制20.0 μL的 PCR反應體系,包括10.0 μL 2×QuantiFast SYBR Premix Ex Taq、8.2 μL RNase free water、正向和反向引物各0.4 μL以及cDNA 1.0 μL。反應體系經(jīng)RT-PCR儀擴增后得到CT值,通過2-△△CT法計算目的基因COX-2和iNOS的mRNA相對表達量。PCR擴增引物種類及其序列見表1。

1.3統(tǒng)計學處理

采用Graph Pad Prism 8.0統(tǒng)計軟件進行數(shù)據(jù)處理。計量資料數(shù)據(jù)以±s形式表示,多組均數(shù)比較采用單因素方差分析(One-Way ANOVA),繼以Tukey法進行兩兩比較。以Plt;0.05表示差異有統(tǒng)計學意義。

2結果

2.1不同濃度Cs4-SeNPs對BV2小膠質細胞活力影響

MTT檢測結果表明,各處理組細胞存活率分別為對照組(100.0±0.5)%、0.01 μmol/L Cs4-SeNPs組(92.4±4.3)%、0.10 μmol/L Cs4-SeNPs組(92.4±4.7)%、1.00 μmol/L Cs4-SeNPs組(91.5±6.5)%。與對照組細胞相比較,0.01、0.10、1.00 μmol/L Cs4-SeNPs對細胞活力均無顯著影響(n=3,F(xiàn)=0.66,q=0.04~1.88,Pgt;0.05)。

2.2不同濃度的Cs4-SeNPs對BV2小膠質細胞GPX4表達影響

Western blot檢測結果顯示,與對照組相比,LPS可顯著下調BV2小膠質細胞GPX4蛋白的表達(F=25.47,q=6.43,Plt;0.01),不同濃度的Cs4-SeNPs預處理均可以對抗LPS此作用(q=5.72~14.07,Plt;0.01),而且1.00 μmol/L Cs4-SeNPs上調GPX4蛋白表達的效果明顯優(yōu)于其他濃度(q=6.04~8.35,Plt;0.01)。見圖1。

2.3不同作用時間對BV2小膠質細胞COX-2和iNOS mRNA表達影響

RT-PCR檢測結果顯示,同對照組相比,LPS誘導6 h可以顯著提高促炎因子COX-2和iNOS的mRNA表達(F=25.00、37.34,q=12.18、12.06,Plt;0.001)。Cs4-SeNPs預處理4 和8 h,COX-2 mRNA的表達與LPS組相比較沒有明顯差異;而Cs4-SeNPs預處理12 h,COX-2 mRNA的表達較LPS組顯著降低(F=25.00,q=6.10,Plt;0.05)。Cs4-SeNPs預處理8 h,iNOS mRNA表達水平較LPS組有明顯降低,至12 h降至最低(q=4.71、6.97,Plt;0.05)。見表2。

3討論

隨著人類壽命的不斷延長,神經(jīng)退行性疾病對社會經(jīng)濟的影響逐漸增加[14-15]。目前神經(jīng)退行性疾病的病因尚未完全清楚,神經(jīng)炎癥被認為是其常見的致病因素之一[15-17]。神經(jīng)炎癥可導致促炎因子水平升高、巨噬細胞激活、外周白細胞浸潤和神經(jīng)組織損傷等變化[18-20]。小膠質細胞的活化在持續(xù)的炎癥反應中發(fā)揮重要作用[21-22]。在神經(jīng)炎癥期間,免疫原性分子可以激活小膠質細胞,產(chǎn)生大量促炎因子,導致神經(jīng)元損傷,受損的神經(jīng)元又進一步激活小膠質細胞,由此在小膠質細胞和神經(jīng)元之間形成惡性循環(huán)[18]。因此,探索并研發(fā)有效的抗神經(jīng)炎癥藥物成為防治神經(jīng)退行性疾病研究的熱點之一。

硒在免疫調節(jié)中發(fā)揮著重要作用[23-24]。研究證實,硒不僅參與免疫啟動,同時還調節(jié)過度免疫反應、對抗慢性炎癥[25-26]。然而,硒狹窄的安全使用范圍限制了硒類制品應用[27-28]。SeNPs是基于納米級復合物的新型藥物,能夠極大增強硒的藥物功能,具有生物利用度高、毒性小等特點,可在風濕性骨關節(jié)炎、心肌炎、結腸炎、銀屑病等疾病中發(fā)揮抗炎保護作用[11,29-32]。本研究所采用的Cs4-SeNPs是由SeNPs連接蟲草多糖基團而成,克服了SeNPs易聚集的缺點。實驗結果顯示,0.01~1.00 μmol/L的Cs4-SeNPs對BV2小膠質細胞無毒性作用,Cs4-SeNPs可有效抑制LPS誘導的BV2小膠質細胞炎癥反應。本研究首次證實了Cs4-SeNPs具有抗小膠質細胞炎癥反應的作用。

硒在體內主要通過轉化為硒蛋白發(fā)揮抗氧化、抗炎、抗癌等作用[33-35]。GPX是人體內存在的主要硒蛋白,能夠抑制炎癥部位自由基的過度產(chǎn)生[36-38]。GPX4是GPX家族中的一員,有研究表明在脂質過氧化介導的疾病中激活GPX4能夠抑制NF-κB信號通路,發(fā)揮抗炎作用[39-41]。多項藥物實驗也證實,調節(jié)GPX4通路可有效抑制促炎因子表達[42-43]。另一項研究結果顯示,Toll樣受體4(TLR4)可調控GPX4表達,抑制TLR4可有效增加氧糖剝奪模型中GPX4表達[44]。本文的研究結果也顯示,LPS可以顯著降低GPX4的表達,而Cs4-SeNPs可以對抗此作用,提示GPX4在Cs4-SeNPs的抗炎保護中具有重要作用。

綜上所述,本研究結果提示Cs4-SeNPs對LPS誘導的BV2小膠質細胞炎癥反應具有抑制作用,其作用機制可能與GPX4的調控有關。本研究結果為Cs4-SeNPs防治神經(jīng)退行性疾病提供了新的實驗依據(jù)。后續(xù)將對GPX4在Cs4-SeNPs抗炎作用中的調控機制進行深入探討。

[參考文獻]

[1]STEPHENSON J, NUTMA E, VAN DER VALK P, et al. Inflammation in CNS neurodegenerative diseases[J]. Immuno-logy, 2018,154(2):204-219.

[2]FORLONI G. Alpha synuclein: neurodegeneration and inflammation[J]. International Journal of Molecular Sciences, 2023, 24(6):5914.

[3]CAI Y L, LIU J L, WANG B, et al. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets[J]. Frontiers in Immunology, 2022,13:856376.

[4]CLAUDINO DOS SANTOS J C, LIMA M P P, BRITO G A C, et al. Role of enteric glia and microbiota-gut-brain axis in Parkinson disease pathogenesis[J]. Ageing Research Reviews, 2023,84:101812.

[5]OLAH M, BIBER K, VINET J, et al. Microglia phenotype diversity[J]. CNS amp; Neurological Disorders Drug Targets, 2011,10(1):108-118.

[6]SOLOVYEV N D. Importance of selenium and selenoprotein for brain function: from antioxidant protection to neuronal signalling[J]. Journal of Inorganic Biochemistry, 2015,153:1-12.

[7]KIELISZEK M, BAEJAK S. Selenium: significance, and outlook for supplementation[J]. Nutrition, 2013, 29(5):713-718.

[8]NAVARRO-ALARCON M, CABRERA-VIQUE C. Selenium in food and the human body: a review[J]. The Science of the Total Environment, 2008,400(1-3):115-141.

[9]VINCETI M, MANDRIOLI J, BORELLA P, et al. Selenium neurotoxicity in humans: bridging laboratory and epidemiolo-gic studies[J]. Toxicology Letters, 2014, 230(2):295-303.

[10]CHEN N, YAO P, ZHANG W, et al. Selenium nanoparticles: enhanced nutrition and beyond[J]. Critical Reviews in Food Science and Nutrition, 2023,63(33):12360-12371.

[11]RAZA A, JOHNSON H, SINGH A, et al. Impact of sele-nium nanoparticles in the regulation of inflammation[J]. Archives of Biochemistry and Biophysics, 2022,732:109466.

[12]AMANI H, HABIBEY R, SHOKRI F, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling[J]. Scientific Reports, 2019,9(1):6044.

[13]CARLSON B A, YOO M H, SHRIMALI R K, et al. Role of selenium-containing proteins in T-cell and macrophage function[J]. The Proceedings of the Nutrition Society, 2010,69(3):300-310.

[14]COVA I, MARKOVA A, CAMPINI I, et al. Worldwide trends in the prevalence of dementia[J]. Journal of the Neurological Sciences, 2017,379:259-260.

[15]WAREHAM L K, LIDDELOW S A, TEMPLE S, et al. Solving neurodegeneration: common mechanisms and strategies for new treatments[J]." Molecular Neurodegeneration, 2022,17(1):23.

[16]JELLINGER K A. Basic mechanisms of neurodegeneration: a critical update[J]. Journal of Cellular and Molecular Medicine, 2010,14(3):457-487.

[17]ZHANG W F, XIAO D, MAO Q W, et al. Role of neuroinflammation in neurodegeneration development[J]." Signal Transduction and Targeted Therapy, 2023,8(1):267.

[18]KEMPURAJ D, THANGAVEL R, NATTERU P A, et al. Neuroinflammation induces neurodegeneration[J]. Journal of Neurology, Neurosurgery and Spine, 2016,1(1):1003.

[19]RUSSO M V, MCGAVERN D B. Inflammatory neuroprotec-

326青島大學學報(醫(yī)學版)60卷

tion following traumatic brain injury[J]. Science, 2016,353(6301):783-785.

[20]ESTES M L, MCALLISTER A K. Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation[J]! Brain Pathology, 2014, 24(6):623-630.

[21]WOODBURN S C, BOLLINGER J L, WOHLEB E S. The semantics of microglia activation: neuroinflammation, homeostasis, and stress[J]." Journal of Neuroinflammation, 2021,18(1):258.

[22]GAO C, JIANG J W, TAN Y Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]." Signal Transduction and Targeted Therapy, 2023,8(1):359.

[23]XIA X J, ZHANG X L, LIU M C, et al. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level[J]." Food amp; Function, 2021,12(3):976-989.

[24]RAZAGHI A, POOREBRAHIM M, SARHAN D, et al. Selenium stimulates the antitumour immunity: Insights to future research[J]." European Journal of Cancer, 2021,155:256-267.

[25]HUANG Z, ROSE A H, HOFFMANN P R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities[J]. Antioxidants amp; Redox Signaling, 2012,16(7):705-743.

[26]ZHENG Y H, XIE T, LI S L, et al. Effects of selenium as a dietary source on performance, inflammation, cell damage, and reproduction of livestock induced by heat stress: a review[J]." Frontiers in Immunology, 2021,12:820853.

[27]AMES B N. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(47):17589-17594.

[28]SONKUSRE P. Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: an in vitro and in vivo study[J]. Frontiers in Oncology, 2019,9:1541.

[29]KASSAB R B, ELBAZ M, OYOUNI A A A, et al. Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid-induced colitis in rats[J]. Environmental Science and Pollution Research International, 2022, 29(37):55790-55802.

[30]REHMAN A, JOHN P, BHATTI A. Biogenic selenium nanoparticles: potential solution to oxidative stress mediated inflammation in rheumatoid arthritis and associated complications[J]. Nanomaterials, 2021,11(8):2005.

[31]GANGADEVI V, THATIKONDA S, POOLADANDA V, et al. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation[J]. Journal of Nanobiotechnology, 2021,19(1):101.

[32]GE J, GUO K, ZHANG C, et al. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-κB/IκB pathway in heart[J]. The Science of the Total Environment, 2021,773:145442.

[33]XIE Y C, KANG R, KLIONSKY D J, et al. GPX4 in cell death, autophagy, and disease[J]." Autophagy, 2023,19(10):2621-2638.

[34]SCHOENMAKERS E, CHATTERJEE K. Human genetic disorders resulting in systemic selenoprotein deficiency[J]." International Journal of Molecular Sciences, 2021,22(23):12927.

[35]KHRLE J. Selenium in endocrinology-selenoprotein-related diseases, population studies, and epidemiological evidence[J]." Endocrinology, 2021,162(2):bqaa228.

[36]HARIHARAN S, DHARMARAJ S. Selenium and selenoproteins: it’s role in regulation of inflammation[J]. Inflammo-pharmacology, 2020,28(3):667-695.

[37]BRIGELIUS-FLOHE R F L. Regulatory phenomena in the glutathione peroxidase superfamily[J]." Antioxidants amp; Redox Signaling, 2020,33(7):498-516.

[38]PEI J, PAN X Y, WEI G H, et al. Research progress of glutathione peroxidase family (GPX) in redoxidation[J]." Frontiers in Pharmacology, 2023,14:1147414.

[39]WANG C Y, CHEN S S, GUO H Y, et al. Forsythoside A mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation[J]. International Journal of Biological Sciences, 2022,18(5):2075-2090.

[40]LI C, DENG X B, XIE X W, et al. Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy[J]. Frontiers in Pharmacology, 2018,9:1120.

[41]XIAO Z, KONG B, FANG J, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction[J]. Bioengi-neered, 2021,12(2):9367-9376.

[42]SUN J Y, ZHANG Y F, WANG C J, et al. Kukoamine A protects mice against osteoarthritis by inhibiting chondrocyte inflammation and ferroptosis via SIRT1/GPX4 signaling pathway[J]. Life Sciences, 2023,332:122117.

[43]WANG X M, LI S S, YU J Y, et al. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress[J]. Journal of Ethnopharmacology, 2023,316:116729.

[44]ZHU K Y, ZHU X, SUN S H, et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats[J]. Experimental Neurology, 2021,345:113828.

(本文編輯于國藝)

主站蜘蛛池模板: 99视频只有精品| 自偷自拍三级全三级视频| 免费看a毛片| 青青草a国产免费观看| 国产凹凸视频在线观看| 99re经典视频在线| 成人欧美在线观看| 无码有码中文字幕| V一区无码内射国产| 精品少妇人妻无码久久| 欧美丝袜高跟鞋一区二区| 亚洲中文字幕23页在线| 91热爆在线| 亚洲中字无码AV电影在线观看| 国产第一页第二页| 精品一区二区无码av| 污污网站在线观看| 国产成人91精品| 内射人妻无码色AV天堂| 欧美色图第一页| 亚洲a免费| 91区国产福利在线观看午夜| 激情在线网| 国产精品久久久久久久久kt| 日韩色图区| 黑人巨大精品欧美一区二区区| 色婷婷在线播放| 亚洲开心婷婷中文字幕| 国产福利在线免费观看| 国产玖玖视频| 日韩一级二级三级| 亚洲欧洲天堂色AV| 国产91小视频| 国产精品福利在线观看无码卡| 人妻出轨无码中文一区二区| 日韩欧美网址| 在线另类稀缺国产呦| 六月婷婷激情综合| 九九热在线视频| 污污网站在线观看| 日韩精品一区二区三区免费| 国产精品自在线天天看片| 丰满的熟女一区二区三区l| 综合社区亚洲熟妇p| 99热这里只有成人精品国产| 538国产视频| 亚洲国产91人成在线| 91成人在线免费观看| 亚洲天堂自拍| 亚洲无线视频| 亚洲三级网站| 亚洲第一香蕉视频| 免费三A级毛片视频| 国产高颜值露脸在线观看| 国产成人禁片在线观看| 国产一区二区三区在线精品专区| 成年免费在线观看| 中文字幕日韩视频欧美一区| 呦视频在线一区二区三区| 潮喷在线无码白浆| 白浆视频在线观看| 日韩123欧美字幕| 高潮毛片无遮挡高清视频播放| 国产无遮挡猛进猛出免费软件| 国产高清精品在线91| 久久久久久久蜜桃| 国产成人8x视频一区二区| 亚洲黄色视频在线观看一区| 午夜三级在线| 免费高清自慰一区二区三区| 国产欧美性爱网| 亚洲综合在线最大成人| 日韩久草视频| a毛片免费看| 亚洲人在线| 在线播放精品一区二区啪视频 | 国产情精品嫩草影院88av| 69免费在线视频| 久久这里只有精品2| 国产福利大秀91| 思思热精品在线8| A级毛片高清免费视频就|