999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于時(shí)間序列相似性與機(jī)器學(xué)習(xí)方法的頁(yè)巖氣井產(chǎn)量預(yù)測(cè)

2024-06-24 04:29:35樊冬艷楊燦孫海姚軍張磊付帥師羅飛
中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版) 2024年3期
關(guān)鍵詞:機(jī)器學(xué)習(xí)

樊冬艷 楊燦 孫海 姚軍 張磊 付帥師 羅飛

摘要:頁(yè)巖氣井單變量產(chǎn)量預(yù)測(cè)存在較強(qiáng)的不確定性,而現(xiàn)場(chǎng)生產(chǎn)動(dòng)態(tài)數(shù)據(jù)同時(shí)包括多個(gè)相關(guān)指標(biāo),針對(duì)如何選取合理的多變量數(shù)據(jù)對(duì)頁(yè)巖氣井產(chǎn)量進(jìn)行預(yù)測(cè),在保證計(jì)算效率的情況下提高預(yù)測(cè)精度。頁(yè)巖氣井的生產(chǎn)動(dòng)態(tài)數(shù)據(jù)集包括日產(chǎn)氣量、日產(chǎn)水量、套壓、油壓、油嘴直徑、開井時(shí)間和溫度等,采用歐式距離和動(dòng)態(tài)時(shí)間彎曲距離對(duì)生產(chǎn)動(dòng)態(tài)數(shù)據(jù)時(shí)間序列進(jìn)行相似性度量,依據(jù)與日產(chǎn)氣量的相關(guān)度,把數(shù)據(jù)分為強(qiáng)相關(guān)時(shí)間序列和弱相關(guān)時(shí)間序列;其次,基于卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、長(zhǎng)短期記憶網(wǎng)絡(luò)和門控神經(jīng)網(wǎng)絡(luò)分別對(duì)全時(shí)間序列、強(qiáng)相關(guān)序列、弱相關(guān)序列和單變量序列進(jìn)行頁(yè)巖氣井產(chǎn)量預(yù)測(cè);最后,以平均絕對(duì)誤差、均方根誤差和決定系數(shù)作為評(píng)價(jià)指標(biāo),得到不同序列的誤差由小到大排序?yàn)閺?qiáng)相關(guān)序列、全時(shí)間序列、弱相關(guān)序列、單變量序列,優(yōu)選的機(jī)器學(xué)習(xí)方法為門控神經(jīng)網(wǎng)絡(luò)和長(zhǎng)短期記憶網(wǎng)絡(luò)。結(jié)果表明,采用機(jī)器學(xué)習(xí)方法結(jié)合頁(yè)巖氣井強(qiáng)相關(guān)性序列(日產(chǎn)氣量、套壓、油壓、日產(chǎn)水量)能有效降低預(yù)測(cè)誤差,提高頁(yè)巖氣井產(chǎn)量預(yù)測(cè)效果。

關(guān)鍵詞:頁(yè)巖氣井; 機(jī)器學(xué)習(xí); 相似性; 時(shí)間序列; 產(chǎn)量預(yù)測(cè)

中圖分類號(hào):TE 312?? 文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1673-5005(2024)03-0119-08?? doi:10.3969/j.issn.1673-5005.2024.03.013

Shale gas well production forecasting based on time sequence similarity and machine learning methods

FAN Dongyan1,2, YANG Can1, SUN Hai1,2, YAO Jun1,2, ZHANG Lei1,2, FU Shuaishi1,2, LUO Fei1

(1.State Key Laboratory of Deep Oil and Gas, China University of Petroleum(East China), Qingdao 266580, China;2.School of Petroleum Engineering in China University of Petroleum(East China), Qingdao 266580, China)

Abstract: Production data from shale gas wells contains multiple different dynamic variables during on-site collection, and there is uncertainty for production forecasting if only a single variable is used. It is important to choose reasonable multi-variable data to predict the output of shale gas wells, and ensure the precision accuracy and computing efficiency. In this study, a new method was proposed. Firstly, a dynamic data set can be comprehensively collected, including daily gas rate, water rate, well pressure, oil choke size, well opening time and fluid temperature. Euclidean distance and dynamic time warping were used to perform similarity testing of the production dynamic data time sequences. Based on the correlation with daily gas rate, the production data were divided into strong related time series and weak related time sequences. Secondly, based on convolutional neural network, recurrent neural network, long and short-term memory network (LSTM)and gate recurrent units (GRU), the shale gas well production was predicted for full-time sequences, strong related sequences, weak related sequences and univariate sequences, respectively. Evaluation indicators were used to verify the methods, including average absolute error, root mean squared error and decision coefficient. The results indicate that the order of error from small to large for different sequences is the strong related sequence, the full time sequence, the weak related sequence, the univariate sequence. The preferred machine learning methods are the GRU and LSTM models. The strong correlation sequence can be used to improve the accuracy and reduce errors in shale gas well forecasting.

Keywords: shale gas well; machine learning; similarity; time series; productivity prediction

產(chǎn)量的準(zhǔn)確預(yù)測(cè)在油氣井高效開發(fā)和開采過(guò)程中至關(guān)重要,涉及整個(gè)生產(chǎn)開發(fā)歷程,包括早期資源評(píng)價(jià)、中期技術(shù)調(diào)整以及后期提高采收率措施[1]?!?br>

登錄APP查看全文

猜你喜歡
機(jī)器學(xué)習(xí)
基于詞典與機(jī)器學(xué)習(xí)的中文微博情感分析
基于網(wǎng)絡(luò)搜索數(shù)據(jù)的平遙旅游客流量預(yù)測(cè)分析
前綴字母為特征在維吾爾語(yǔ)文本情感分類中的研究
下一代廣播電視網(wǎng)中“人工智能”的應(yīng)用
活力(2016年8期)2016-11-12 17:30:08
基于支持向量機(jī)的金融數(shù)據(jù)分析研究
基于Spark的大數(shù)據(jù)計(jì)算模型
基于樸素貝葉斯算法的垃圾短信智能識(shí)別系統(tǒng)
極限學(xué)習(xí)機(jī)在圖像分割中的應(yīng)用
一種基于遷移極速學(xué)習(xí)機(jī)的人體行為識(shí)別模型
主站蜘蛛池模板: 精品国产黑色丝袜高跟鞋| 国产高潮视频在线观看| 99久久精彩视频| 国产高清国内精品福利| 91免费观看视频| 狠狠做深爱婷婷综合一区| 国产在线观看精品| 国产精品亚洲va在线观看| 在线观看精品国产入口| 色天天综合| 国产成人久视频免费| 无码免费试看| 欧美一区中文字幕| 久久久久夜色精品波多野结衣| 欧美成人手机在线观看网址| 日本一区中文字幕最新在线| 一级成人a做片免费| 亚洲精品va| 免费va国产在线观看| 日韩在线1| 国产va欧美va在线观看| 毛片手机在线看| 全免费a级毛片免费看不卡| 91久久性奴调教国产免费| 日韩亚洲综合在线| 日韩无码黄色网站| 2021精品国产自在现线看| 狠狠色噜噜狠狠狠狠奇米777| 国产乱子伦视频三区| 国产玖玖玖精品视频| 国产成人精品一区二区| 91精品国产一区| 日本尹人综合香蕉在线观看 | 91麻豆国产精品91久久久| 欧美午夜理伦三级在线观看 | 国产高清不卡视频| 午夜国产小视频| 精品国产电影久久九九| 亚洲国产成人精品一二区| 日韩欧美中文在线| 欧美国产在线精品17p| 日韩不卡高清视频| 97久久免费视频| 国产成人精品一区二区免费看京| 久久久久无码精品| 欧美午夜视频在线| 国产在线麻豆波多野结衣| 久久国产精品影院| 精品久久香蕉国产线看观看gif| 欧美成人午夜影院| 色综合国产| 狠狠久久综合伊人不卡| 欧美成a人片在线观看| 国产视频欧美| 日韩麻豆小视频| 国产成人亚洲无码淙合青草| 亚洲欧美不卡中文字幕| 久久精品国产亚洲AV忘忧草18| 国产成人高清精品免费5388| 无码国产偷倩在线播放老年人 | 日韩精品视频久久| 亚洲福利视频一区二区| 女人18一级毛片免费观看| 国产成人亚洲欧美激情| 日本www在线视频| 影音先锋丝袜制服| 91青青在线视频| 五月天婷婷网亚洲综合在线| 亚洲天堂久久| 精品91自产拍在线| 在线看片中文字幕| 91娇喘视频| 无遮挡国产高潮视频免费观看 | 日韩无码白| 国产理论一区| 日韩国产精品无码一区二区三区| 免费xxxxx在线观看网站| 亚洲天堂成人在线观看| 视频一区视频二区中文精品| 日本AⅤ精品一区二区三区日| 亚洲精品国产日韩无码AV永久免费网| 亚洲色欲色欲www在线观看|