999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Toeplitz算子在Hardy空間上的復對稱性

2024-05-20 21:58:13富佳李然

富佳 李然

摘要:復對稱算子是由復對稱矩陣的概念抽象出來的,本文借助矩陣研究如何刻畫經典Hardy空間上的一類復對稱Toeplitz算子。首先在Hardy空間上定義兩類新的共軛算子,它們分別為n倒置的共軛算子和n二次倒置的共軛算子。其次分奇偶情況去完整刻畫在這類共軛算子下Toeplitz算子是復對稱的結構,利用在Hardy空間上經典正規正交基下Toeplitz算子的矩陣表示,給出了Toeplitz算子分別相對于一類共軛算子是復對稱的充分必要條件。最后對本文進行總結及展望,提出能否繼續刻畫Toeplitz算子相對于這類共軛算子是m-復對稱的問題。

關鍵詞:Hardy空間;Toeplitz算子;共軛算子;復對稱算子;矩陣表示

中圖分類號:O177.1文獻標志碼:A文獻標識碼

Complex symmetry of Toeplitz operators on Hardy spaces

FU? Jia,LI? Ran*

(School of Mathematics, Liaoning Normal University,Dalian,Liaoning 116029,China)

Abstract: Complex symmetric operators are abstracts from the concept of complex symmetric matrices. In this paper,we study how to characterize a class of complex symmetric Toeplitz operators on classical Hardy Spaces through matrix. Firstly,two new classes of conjugations are defined on Hardy spaces,which are n-inverted conjugations and n-quadratic inverted conjugations respectively. Secondly,it is described that the Toeplitz operator is complex symmetric under conjugations in odd and even cases,and the necessary and sufficient conditions for Toeplitz operator to be complex symmetric under conjugations on Hardy spaces are given by using the matrix representation of the Toeplitz operator under classical orthogonal basis respectively. Finally,this paper summarizes and looks forward to the problem of whether Toeplitz operator can be described as m-complex symmetric relative to this class of conjugations.

Key words: Hardy spaces;Toeplitz operators;conjugations;complex symmetric operators;matrix representation

參考文獻(References)

[1] TOEPLITZ O. Zur theorie der quadratischen und bilinearen formen von unendlichvielen vernderlichen[J]. Mathematische Annalen, 1911, 70(3): 351-376.

[2] GARICIA S R, PUTINAR M. Complex symmetric operators and applications[J]. Transactions of the American Mathematical Society, 2005, 358(3): 1285-1315.

[3] GARICIA S R, PUTINAR M. Complex symmetric operators and applications II[J]. Transactions of the American Mathematical Society, 2007, 359(8): 3913-3931.

[4] GARICIA S R, WOGEN W R. Complex symmetric partial isometries[J]. Journal of Functional Analysis, 2009, 257(4): 1251-1260.

[5] GARICIA S R. Conjugation and Clark operators[J]. Contemporary Mathematics, 2006, 393: 67-111.

[6] GUO K Y, ZHU S. A canonical decomposition of complex symmetric operators[J]. Journal of Operator Theory, 2014, 72(2): 529-547.

[7] KO E, LEE J E. On complex symmetric Toeplitz operators[J]. Journal of Mathematical Analysis and Applications, 2016, 434(1): 20-34.

[8] NOOR S W. Complex symmetry of Toeplitz operators with continuous symbols[J]. Archiv der Mathematik, 2017, 109(5): 455-460.

[9] BU Q G, CHEN Y, ZHU S. Complex symmetric Toeplitz operators[J]. Integral Equations and Operator Theory, 2021, 93(2): 15-33.

[10] WANG M F, WU Q, HAN K K. Complex symmetry of Toeplitz operators over the bidisk[J]. Acta Mathematica Scientia, 2023, 43(4): 1537-1546.

[11] ARUP C, SOMA D, CHANDAN P, et al. Characterization of C-symmetric Toeplitz operators for a class of conjugations in Hardy spaces[J]. Linear and Multilinear Algebra, 2022, 71(12): 2026-2048.

[12] LI R, YANG Y X, LU Y F. A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces[J]. Journal of Mathematical Analysis and Applications, 2020, 489(2): 124173.

[13] KO E, LEE J E, LEE J. Complex symmetric Toeplitz operators on the weighted Bergman space[J]. Complex Variables and Elliptic Equations, 2022, 67(5): 1393-1408.

[14] JIANG C, DONG X T, ZHOU Z H. Complex symmetric Toeplitz operators on the unit polydisk and the unit ball[J]. Acta Mathematica Scientia, 2020, 40(1): 35-44.

[15] HU X H, DONG X T, ZHOU Z H. Complex symmetric monormial Toeplitz operators on the unit ball[J]. Journal of Mathematical Analysis and Applications, 2020, 492(2): 124490.

[16] DONG X T, GAO Y X, HU Q J. Complex symmetric Toeplitz operators on the unit polydisk[J]. International Journal of Mathematics, 2023, 34(1): 96-120.

[17] He X H. Complex symmetry of Toeplitz operators on the weighted Bergman spaces[J]. Czechoslovak Mathematical Journal, 2022, 72(3): 855-873.

[18] KO E, LEE J E, LEE J. Complex symmetric Toeplitz operators on the weighted Bergman space[J]. Complex Var. Elliptic Equ., 2022, 67(6): 1393-1408.

[18] LI A S, LIU Y, CHEN Y. Complex symmetric Toeplitz operators on the Dirichlet space[J]. Journal of Mathematical Analysis and Applications, 2020, 487(1): 123998.

[19] HAN K K, WANG M F, WU Q. Unbounded complex symmetric Toeplitz operators[J]. Acta Mathematica Scientia, 2022, 42(1): 420-428.(責任編輯:編輯郭蕓婕)

主站蜘蛛池模板: 五月婷婷综合网| 久久综合婷婷| 影音先锋亚洲无码| 国产视频欧美| 国产在线97| 在线无码九区| 亚洲国产欧美国产综合久久| 热久久这里是精品6免费观看| 日本午夜影院| 成人国产免费| 九九九精品成人免费视频7| 成人国产一区二区三区| 尤物成AV人片在线观看| 欧美成人免费一区在线播放| 国产亚洲高清在线精品99| 最新加勒比隔壁人妻| 久久国产精品无码hdav| 国产白浆视频| 亚洲精品国产综合99| 国产激爽大片高清在线观看| yy6080理论大片一级久久| 亚洲午夜福利精品无码| 久久久久国产一级毛片高清板| 欧美午夜视频在线| 亚洲精品视频在线观看视频| 91国内视频在线观看| 欧美无专区| 日韩在线成年视频人网站观看| 欧美不卡二区| 欧美一级片在线| 69综合网| 国产91熟女高潮一区二区| 午夜欧美在线| 婷婷丁香在线观看| 黄片在线永久| 五月婷婷综合色| 怡春院欧美一区二区三区免费 | 中文字幕一区二区人妻电影| 久久久91人妻无码精品蜜桃HD| 22sihu国产精品视频影视资讯| 久久中文电影| 亚洲一区毛片| 最新日本中文字幕| 国产产在线精品亚洲aavv| 无遮挡国产高潮视频免费观看| 啪啪国产视频| 日本黄色a视频| yy6080理论大片一级久久| 久久国产精品影院| 色婷婷电影网| 91视频精品| 亚洲成人精品| 亚洲成综合人影院在院播放| 国产精品网拍在线| 2048国产精品原创综合在线| 天天色天天综合| 国产噜噜噜视频在线观看| 91精品专区国产盗摄| 婷婷综合色| 欧美一区二区人人喊爽| 国产精品成人啪精品视频| 亚洲人成影视在线观看| 四虎国产在线观看| 亚洲男人在线天堂| 亚洲欧美成人影院| 国产真实二区一区在线亚洲| 试看120秒男女啪啪免费| 久视频免费精品6| 国产福利微拍精品一区二区| 国产又爽又黄无遮挡免费观看| 日韩无码黄色| 青青草原国产精品啪啪视频| 国产无码网站在线观看| 秋霞国产在线| 欧美黄色网站在线看| 国产欧美日韩在线在线不卡视频| 五月天综合婷婷| 亚洲水蜜桃久久综合网站| 国产精品成| 亚洲国产精品日韩av专区| 一边摸一边做爽的视频17国产 | 国产日产欧美精品|