999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

水位變動(dòng)對(duì)三峽水庫(kù)消落帶典型雌激素效應(yīng)物質(zhì)及活性的影響

2024-05-20 09:59:29周敏邵迎黃思瑜陳忠禮
重慶大學(xué)學(xué)報(bào) 2024年4期

周敏 邵迎 黃思瑜 陳忠禮

doi: 10.11835/j.issn.1000-582X.2023.253

收稿日期:2022-12-12

網(wǎng)絡(luò)出版日期:2023-06-19

基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51909015)。

Foundation:Supported by National Natural Science Foundation of China(51909015).

作者簡(jiǎn)介:周敏(1998—),女,碩士研究生,主要從事環(huán)境毒理學(xué)方向的研究,(E-mail)mindy.zhou@cqu.edu.cn。

通信作者:邵迎,女,講師,(E-mail)ying.shao@cqu.edu.cn。

摘要:以三峽庫(kù)區(qū)消落帶為研究對(duì)象,將化學(xué)分析與生物測(cè)試相結(jié)合,研究水位變動(dòng)對(duì)消落帶土壤(落干期)和沉積物(淹水期)雌激素效應(yīng)物質(zhì)種類和含量及雌激素活性的影響,探討典型雌激素與雌激素效應(yīng)的關(guān)聯(lián)程度,以期為水庫(kù)消落帶生態(tài)安全和環(huán)境健康管理提供重要的數(shù)據(jù)支撐。借助超高效液相色譜-質(zhì)譜(UPLC-MS)對(duì)8種典型雌激素的賦存與質(zhì)量濃度進(jìn)行靶向分析,并使用重組基因酵母篩選(YES)體系檢測(cè)環(huán)境樣品雌激素活性,通過(guò)相關(guān)性分析和濃度加和計(jì)算建立化學(xué)物質(zhì)與生物效應(yīng)間的相關(guān)聯(lián)系。8種典型雌激素僅有雌酮(E1)和乙炔基雌二醇(EE2)被檢出,含量在0.025~2.667 ng/g范圍內(nèi)。淹水期的沉積物具有明顯的雌激素活性,其雌二醇當(dāng)量(EEQ)值為0.637~6.987 ng/g。相關(guān)性分析結(jié)果顯示,靶向分析的雌激素效應(yīng)物質(zhì)與雌激素效應(yīng)間無(wú)明顯相關(guān)性,僅能解釋29.46%的雌激素活性。水位變動(dòng)影響消落帶雌激素效應(yīng)物質(zhì)的種類和質(zhì)量濃度,淹水提高了沉積物雌激素活性。典型雌激素物質(zhì)與庫(kù)區(qū)消落帶雌激素效應(yīng)無(wú)顯著關(guān)聯(lián)。因此,需要開發(fā)新的方法與技術(shù),以便更為精確地指導(dǎo)消落帶雌激素效應(yīng)的風(fēng)險(xiǎn)識(shí)別與管控。

關(guān)鍵詞:沉積物;水位變動(dòng);三峽水庫(kù);雌激素活性;典型雌激素

中圖分類號(hào):X524?????????????? 文獻(xiàn)標(biāo)志碼:A????????????????? ?????? 文章編號(hào):1000-582X(2024)04-001-11

The effects of water fluctuation on typical estrogens and activities in the water level fluctuation zone of the Three Gorges Reservoir

ZHOU Min1, SHAO Ying1, HUANG Siyu2, CHEN Zhongli1

(1. Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment, Chongqing University, Chongqing 400044, P. R. China; 2. Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China)

Abstract: In this study, the water level fluctuation zone of the Three Gorges Reservoir (TGR) was selected for investigation. A combination of chemical analysis and biological testing was utilized to investigate the effects of water fluctuation on the compounds and concentrations of estrogenic effector substances, as well as the estrogenic activity in soil (during the non-flooding period) and sediment (during the flooding period). The correlation between typical estrogens and estrogenic activity was analyzed. The study aimed to provide crucial data support for reservoir ecological safety and environmental health management. The distribution and concentration of 8 typical estrogens were analyzed using an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), while estrogenic activity was determined via the yeast estrogen screening assay (YES). Correlation analysis and concentration summation calculations were used to establish the relationships between chemical substances and biological effects. Among the 8 studied estrogens, only estrone (E1) and ethinylestradiol (EE2) were detected, with concentrations ranging from 0.025 ng/g to 2.667 ng/g. Sediments during the flooding period showed significantly higher estrogenic activity, with 17β-estradiol equivalents (EEQ) ranging from 0.637 ng/g to 6.987 ng/g. However, correlation analysis did not reveal a distinct correlation between the target compounds and estrogenic effects, as the detected chemicals only accounted for about 29.46% of the estrogenic activity. The results suggest that water fluctuation can influence the type and the concentration of estrogens in the water level fluctuation zone of the TGR, leading to increased estrogenic activity during the flooding period. The direct linkage between typical estrogens and estrogenic activity was not identified. Therefore, new methods and techniques are required to enhance identification accuracy and improve the management of the risk of estrogenic effects in the water level fluctuation zone.

Keywords: sediments; water level fluctuation; Three Gorges Reservoir; estrogenic activity; typical estrogens

內(nèi)分泌干擾物(EDCs)是一類在環(huán)境中廣泛存在,可對(duì)動(dòng)物和人類的甲狀腺、皮質(zhì)激素、神經(jīng)系統(tǒng)、生殖系統(tǒng)產(chǎn)生不良影響的新污染物[1-2],已經(jīng)被聯(lián)合國(guó)環(huán)境規(guī)劃署列為需要全球合作的環(huán)境問(wèn)題[3]。其中,雌激素會(huì)影響生殖能力,降低精子數(shù)量,誘導(dǎo)產(chǎn)生卵黃素(VTG)并改變雄魚的其他生殖特征,甚至還會(huì)增加?jì)D女患乳腺癌的風(fēng)險(xiǎn)[4]。大量研究表明,典型雌激素物質(zhì)在世界各地土壤和水體檢出率、濃度均明顯增加,在該環(huán)境濃度下會(huì)破壞魚類、家畜、野生動(dòng)物以及人類健康[5]。因此,環(huán)境中典型雌激素的含量及其風(fēng)險(xiǎn)效應(yīng)逐漸引起關(guān)注。環(huán)境樣品的雌激素效應(yīng)通常是所有化合物綜合作用的結(jié)果,基于效應(yīng)的生物分析方法常被用于評(píng)估環(huán)境的雌激素效應(yīng)風(fēng)險(xiǎn)。例如,通過(guò)熒光素酶實(shí)驗(yàn)評(píng)估丁基羥基茴香醚(BHA)、丁基羥基甲苯(BHT)、丙基棓酸鹽(PG)和丁基苯甲酸酯(BP)的雌激素/抗雌激素作用[6]。2,3,7,8-四氯二苯并對(duì)二噁英(TCDD)染毒轉(zhuǎn)基因小鼠的體內(nèi)實(shí)驗(yàn)通過(guò)雌激素反應(yīng)性報(bào)告檢測(cè)雌激素/抗雌激素作用[7]。通過(guò)測(cè)量6種有機(jī)氯農(nóng)藥和這些農(nóng)藥的混合物在轉(zhuǎn)染的HeLa細(xì)胞中調(diào)節(jié)雌激素反應(yīng)報(bào)告基因的轉(zhuǎn)錄激活能力的體外實(shí)驗(yàn),來(lái)測(cè)量這些物質(zhì)的雌激素活性[8]。

在河流、水庫(kù)和湖泊等天然與人工水體中,水文情勢(shì)是污染物遷移轉(zhuǎn)化的主要驅(qū)動(dòng)因子。人工調(diào)控水位變動(dòng)是水庫(kù)區(qū)別于天然水體的重要特征之一,影響污染物在水環(huán)境中的遷移、分布、濃度及效應(yīng)。與其他大型水庫(kù)和湖泊相比,三峽水庫(kù)具有獨(dú)特的反季節(jié)水位調(diào)度運(yùn)行方式,自2010年進(jìn)入正常水位調(diào)控運(yùn)行周期以來(lái),三峽水庫(kù)采用“蓄清排洪”的調(diào)度方式,在豐水期(夏季)以145 m低水位運(yùn)行,枯水期(冬季)則以175 m高水位運(yùn)行,在30 m水位變動(dòng)范圍內(nèi)形成了與天然河流漲落季節(jié)相反的水庫(kù)消落帶,水位落差大、水淹時(shí)間長(zhǎng)且具有顯著的水淹梯度。水位波動(dòng)使得三峽庫(kù)區(qū)消落帶物質(zhì)交換和能量流動(dòng)極為活躍[9]。水位變動(dòng)下消落帶處在淹水和裸露交替的動(dòng)態(tài)變化過(guò)程中,影響污染物在沉積物中的吸附解吸過(guò)程,從而導(dǎo)致污染物空間分布格局發(fā)生變化[9]。水位變動(dòng)還會(huì)引起水體流量和懸浮顆粒物明顯變化,水體稀釋作用以及懸浮顆粒物含量將對(duì)污染物濃度水平和污染效應(yīng)產(chǎn)生重要影響[10]。此外,水位波動(dòng)過(guò)程、庫(kù)區(qū)氣候變化、水體含氧量、氧化還原條件、溫度以及微生物活動(dòng)會(huì)形成復(fù)雜的綜合效應(yīng),影響污染物的轉(zhuǎn)化釋放[11],改變污染物種類和毒性效應(yīng)。因此,在水庫(kù)及消落帶生態(tài)系統(tǒng)中,水位變動(dòng)與污染物分布及生物效應(yīng)存在密切的響應(yīng)關(guān)系。

研究表明,三峽水庫(kù)運(yùn)行初期,庫(kù)區(qū)重慶段的沉積物有機(jī)萃取物已經(jīng)表現(xiàn)出顯著的雌激素效應(yīng)[12- 13],雌激素及其效應(yīng)可能對(duì)庫(kù)區(qū)生態(tài)環(huán)境造成潛在風(fēng)險(xiǎn)。水庫(kù)經(jīng)過(guò)多年水文運(yùn)行以來(lái),典型雌激素在三峽庫(kù)區(qū)消落帶的環(huán)境賦存與分布情況如何?水位變動(dòng)對(duì)消落帶雌激素效應(yīng)潛在風(fēng)險(xiǎn)的影響怎樣?為了回答上述問(wèn)題,以三峽水庫(kù)消落帶作為研究對(duì)象,在淹水期和落干期從水庫(kù)干流和支流(共5個(gè)地點(diǎn))消落帶采集沉積物樣品,采用液相色譜-質(zhì)譜(LC-MS)分析雌三醇、17β-雌二醇、17α-雌二醇、17α-乙炔雌二醇、雌酚酮、己烯雌酚、雙烯雌酚和己烯雌酚8種典型環(huán)境雌激素的分布,使用重組基因酵母篩選(YES)技術(shù)測(cè)試雌激素活性,分析三峽庫(kù)區(qū)典型雌激素的污染情況以及水位波動(dòng)對(duì)雌激素效應(yīng)的影響,以期為水庫(kù)消落帶生態(tài)系統(tǒng)健康保護(hù)提供支撐。

1 材料與方法

1.1 試劑

雌三醇、17β-雌二醇、17α-雌二醇、17α-乙炔雌二醇、雌酚酮、己烯雌酚、雙烯雌酚和己烯雌酚的混合標(biāo)準(zhǔn)儲(chǔ)備溶液(純度為99%)購(gòu)自上海安譜璀世標(biāo)準(zhǔn)技術(shù)服務(wù)有限公司。17β-雌二醇(E2,Sigma-Aldrich)溶于二甲亞砜(DMSO,Sigma-Aldrich)作為陽(yáng)性對(duì)照(PC)儲(chǔ)備液。所有用于樣品處理和分析的溶劑(正己烷、丙酮、乙腈和甲醇)均為HPLC級(jí)。

1.2 樣品采集與處理

三峽水庫(kù)位于長(zhǎng)江中上游地區(qū),涉及重慶市和湖北省共26個(gè)區(qū)縣。占地面積54 061.5 km2,其中地表水面積1 864 km2,占整個(gè)水庫(kù)面積的3.44%[14]。三峽庫(kù)區(qū)的飲用水源為129個(gè)城鎮(zhèn)和117萬(wàn)多人提供飲用水,對(duì)當(dāng)?shù)鼐用竦纳詈蛥^(qū)域經(jīng)濟(jì)發(fā)展具有重要意義[15- 16]。2010年以來(lái),三峽庫(kù)區(qū)水位在夏季145 m和冬季175 m之間波動(dòng)[17],在三峽庫(kù)區(qū)形成了垂直高度為30 m、長(zhǎng)度為662 km、總面積為349 km2的水庫(kù)消落帶[18]。

研究中,在三峽庫(kù)區(qū)干流和典型支流共設(shè)置了5個(gè)采樣點(diǎn)進(jìn)行沉積物樣品采集(見表1),分別是豐都(FD)、高陽(yáng)(GY)、云陽(yáng)(YY)、奉節(jié)(FJ)、巫山(WS)。樣點(diǎn)布設(shè)包括庫(kù)首峽谷地帶、庫(kù)區(qū)中部腹心地帶、庫(kù)尾區(qū)域,體現(xiàn)水庫(kù)不同區(qū)域的水文特征。在2020年8月(落干期)和2021年4月(淹水期)分別于每個(gè)采樣點(diǎn)用抓斗隨機(jī)采取3個(gè)沉積物樣品,并充分混合,作為該樣點(diǎn)的代表沉積物樣品,總共采集了10個(gè)代表樣品。所有的沉積物樣品都收集在錫箔袋中,低溫保存運(yùn)送至實(shí)驗(yàn)室,并保存于-80 ℃冰箱中。

沉積物樣品的預(yù)處理流程如下[19-20]:經(jīng)過(guò)冷凍干燥、研磨并過(guò)篩(60目)后,稱取20 g樣品,以正己烷:丙酮(1:1,V/V)混合液作為溶劑,使用索氏提取器(JPSXT-06,中國(guó)上海)進(jìn)行為期18 h的索氏提取。提取液經(jīng)旋轉(zhuǎn)蒸發(fā)、氮吹至近干,并復(fù)溶于1 mL甲醇中,此后,提取液被平均分成2部分,分別用于分析化學(xué)成分和生物測(cè)定。生物測(cè)定樣品將提取液再次氮吹近干,復(fù)溶于0.5 mL二甲亞砜(DMSO,Sigma-Aldrich)中,待分析。同時(shí),用于化學(xué)分析的提取液過(guò)膜(0.22 μm)去除雜質(zhì)。這兩部分待分析提取液的最終沉積物當(dāng)量(SEQ)質(zhì)量濃度均為20 g/mL。

1.3 雌激素活性測(cè)定(YES)

為了避免細(xì)胞毒性對(duì)雌激素效應(yīng)測(cè)定的干擾,首先根據(jù)下述方法使用H4IIE大鼠肝癌細(xì)胞進(jìn)行了細(xì)胞毒性測(cè)定(MTT法)[21]。細(xì)胞在37 ℃、5%的二氧化碳和95%的濕度環(huán)境下,在含有10%胎牛血清(FBS,Gibco)和1%青霉素-鏈霉素溶液(PS,BI)的DMED培養(yǎng)基(Dulbeccos Modified Eagles Medium,BI)中培養(yǎng)。進(jìn)行MTT測(cè)定前,將2×104 /mL細(xì)胞懸液接種于96孔板中,每孔100 μL,在37 ℃下培養(yǎng)24 h,使細(xì)胞貼壁,再將細(xì)胞暴露在每個(gè)樣品的1:2系列稀釋液中,每個(gè)質(zhì)量濃度梯度設(shè)置3個(gè)平行[22]。暴露48 h后,去掉原培養(yǎng)液,每孔加入100 μL的MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑,0.5 mg/mL)溶液培養(yǎng)30 min。吸出孔內(nèi)溶液,每孔加入200 μL DMSO,振蕩并混勻。在酶標(biāo)儀(Synergy LX,BioTek,美國(guó))492 nm下測(cè)定吸光度進(jìn)行細(xì)胞活力估計(jì)。細(xì)胞存活率用樣品組與空白對(duì)照組細(xì)胞吸光度的比值來(lái)表示,結(jié)果為相對(duì)存活率并以百分比給出,相對(duì)存活率低于80%,表明具有潛在細(xì)胞毒性,每個(gè)樣品獨(dú)立重復(fù)實(shí)驗(yàn)3次,每次設(shè)置3個(gè)平行。

重組酵母菌細(xì)胞購(gòu)自無(wú)錫中科水質(zhì)環(huán)境技術(shù)有限公司,該菌株將人類雌激素受體基因、雌激素應(yīng)答表達(dá)子質(zhì)粒和編碼了β-半乳糖苷酶的基因轉(zhuǎn)入酵母中,通過(guò)測(cè)量β-半乳糖苷酶的活性來(lái)檢測(cè)樣品的雌激素激動(dòng)劑活性[23]。酵母檢測(cè)按以下方法進(jìn)行[24]。簡(jiǎn)而言之,將酵母菌在30 ℃恒溫振蕩培養(yǎng)箱中培養(yǎng)24 h,使其到對(duì)數(shù)生長(zhǎng)期,并調(diào)整到光密度(OD600)為0.75±0.005,將5 μL樣品與995 μL菌液混合,取200 μL置于96孔板中,每個(gè)樣品進(jìn)行1:2的系列稀釋,設(shè)3個(gè)平行孔,培養(yǎng)4 h后,用酶標(biāo)儀測(cè)定OD600。隨后進(jìn)行β-半乳糖苷酶的活性測(cè)定,以加入Na2CO3終止酶活反應(yīng),用酶標(biāo)儀測(cè)定OD420。根據(jù)細(xì)胞毒性測(cè)試結(jié)果確定測(cè)試樣品的最高質(zhì)量濃度,每次實(shí)驗(yàn)中包括17β-雌二醇(E2)的稀釋系列(4、8、20、40、80、200、400、800、2 000 pM)作為陽(yáng)性對(duì)照(PC)和0.5%DMSO作為陰性對(duì)照,所有的樣品至少進(jìn)行3次獨(dú)立重復(fù)實(shí)驗(yàn)。β-半乳糖苷酶的活性根據(jù)式(1)計(jì)算[25]。

,??? (1)

式中:U為β-半乳糖苷酶活性,t、V、D分別為酶反應(yīng)時(shí)間、體積和稀釋系數(shù)。OD600是在600 nm處測(cè)量的吸光度,OD420和OD'420分別是樣品組和陰性對(duì)照組在420 nm處的吸光度。每個(gè)樣品有9個(gè)1:2的系列稀釋質(zhì)量濃度。

1.4 化學(xué)分析

使用超高效液相色譜(UPLC)串聯(lián)三重四級(jí)桿質(zhì)譜(Waters Xevo TQ-S,Waters公司,美國(guó))進(jìn)行典型雌激素的含量測(cè)定,該串聯(lián)質(zhì)譜儀在多重反應(yīng)監(jiān)測(cè)(MRM)模式下運(yùn)行。液相色譜柱為ACQUITY UPLC HSS T3柱(2.1 mm × 50 mm,1.8 μm粒徑,Waters公司,美國(guó)),進(jìn)樣量為5 ?L,柱溫40 ℃。流動(dòng)相由水(溶劑A)和乙腈(溶劑B)組成(V/V),流速400 μL/min。梯度洗脫模式按照以下條件進(jìn)行:0~2 min,90%溶劑A,10%溶劑B;2~3 min,50%溶劑A,50%溶劑B;3~4.1 min:10%溶劑A,90%溶劑B;4.1~5 min,90%溶劑A,10%溶劑B。

1.5 數(shù)據(jù)分析

所有實(shí)驗(yàn)數(shù)據(jù)均使用SPSS和Origin 2019(美國(guó)微軟)進(jìn)行分析。采用單因素方差分析(ANOVA)進(jìn)行統(tǒng)計(jì)學(xué)上的差異檢驗(yàn),再用皮爾遜相關(guān)分析確定化學(xué)物質(zhì)與雌激素作用之間的相關(guān)性(*p≤0.05和**p≤0.01)。不同的大寫字母表示淹水期不同采樣點(diǎn)的提取物產(chǎn)生的β-半乳糖苷酶活性在p<0.05時(shí)有顯著差異,不同的小寫字母表示落干期不同采樣點(diǎn)的提取物產(chǎn)生的β-半乳糖苷酶活性在p<0.05時(shí)有顯著差異。

為了確定E2和環(huán)境樣品在YES檢測(cè)中的EC20和EC50,使用Graphpad Prism(8.0版,美國(guó))繪制質(zhì)量濃度與β-半乳糖苷酶活性的劑量反應(yīng)曲線并進(jìn)行擬合,生物測(cè)定的雌激素當(dāng)量(EEQbio)用公式(2)計(jì)算[26]。

,??? (2)

式中:Ci指當(dāng)樣品雌激素活性等于E2的EC20對(duì)應(yīng)的雌激素活性時(shí)樣品的質(zhì)量濃度。

環(huán)境樣品的理論EEQ值根據(jù)濃度加和概念從目標(biāo)化合物的化學(xué)分析中計(jì)算出來(lái),理論雌激素當(dāng)量(EEQchem)用式(3)計(jì)算[27]:

,??? (3)

式中:Ci和REPi是每個(gè)目標(biāo)化學(xué)品的質(zhì)量濃度和它在YES實(shí)驗(yàn)中的相對(duì)雌激素潛力。

2 結(jié)果與討論

2.1 三峽庫(kù)區(qū)消落帶沉積物細(xì)胞毒性

細(xì)胞毒性實(shí)驗(yàn)結(jié)果顯示,在0.08~20 mg/mL范圍內(nèi),大多數(shù)沉積物樣品對(duì)H4IIE細(xì)胞沒(méi)有誘發(fā)細(xì)胞毒性作用。沉積物提取液對(duì)H4IIE細(xì)胞暴露48 h后,細(xì)胞存活率如圖1和圖2所示,隨著提取液質(zhì)量濃度的增加,細(xì)胞活力略有下降。落干期位于庫(kù)區(qū)支流高陽(yáng)的沉積物提取液毒性最大:當(dāng)暴露質(zhì)量濃度為20 mg/mL時(shí),細(xì)胞存活率最低,僅為76%(見圖1)。分析原因是水庫(kù)蓄水導(dǎo)致支流回水,一些污染物被輸送到支流中[28]。同時(shí),支流較低的流速和較長(zhǎng)的水體停留時(shí)間可能會(huì)促進(jìn)污染物在沉積物中的積累[29],類似情況已在三峽庫(kù)區(qū)污染物的研究中被證實(shí)[30]。豐都的沉積物樣品在最高暴露質(zhì)量濃度(20 mg/mL)下,細(xì)胞存活率下降到79%(見圖2)。其余8個(gè)提取液在0.08~20 mg/mL范圍內(nèi)細(xì)胞存活率均高于80%,因此,這些樣品在測(cè)試質(zhì)量濃度下無(wú)細(xì)胞毒性[22, 31]。

2.2 三峽庫(kù)區(qū)消落帶沉積物雌激素活性

使用YES實(shí)驗(yàn)測(cè)定了10個(gè)沉淀物樣品提取物的雌激素活性(見圖3)。結(jié)果顯示,在0.39~100 g/L的范圍內(nèi),淹水期的5個(gè)沉積物提取液均會(huì)導(dǎo)致β-半乳糖苷酶活性對(duì)質(zhì)量濃度依賴性升高,并呈現(xiàn)“S”型效應(yīng)-劑量關(guān)系,其誘導(dǎo)產(chǎn)生的β-半乳糖苷酶活性比E2低大約108倍。其中,淹水期的高陽(yáng)提取物表現(xiàn)出最強(qiáng)的雌激素活性,EC50值為(3.381±1.498)g/L,這與上述細(xì)胞毒性實(shí)驗(yàn)結(jié)果實(shí)驗(yàn)一致。巫山、豐都和奉節(jié)在淹水期的沉積物提取物雌激素效應(yīng)緊隨其后,EC50值分別為(4.461±2.277)g/L、(7.249±2.922)g/L和(11.61±3.763)g/L。淹水期云陽(yáng)提取物的EC50值為(41.73±5.187)g/L,明顯低于其他4個(gè)地區(qū)(p<0.05)。所有淹水期提取物雌二醇當(dāng)量(EEQ)值在0.637~6.987 ng/g之間,略高于Wang等[12]的研究結(jié)果(EEQ在0.3~1.0 ng/g)。這一結(jié)果與其他地區(qū)的雌激素活性研究結(jié)果相當(dāng),例如遼河沉積物雌激素活性當(dāng)量為未檢出~6.04 ng/g [32]、珠江(未檢出~7.24 ng/g)[33]、黃河(0.45~1.29 ng/g)[27],以及日本東京灣(2.07~12.1 ng/g)[34]。由于E2對(duì)淡水生物的長(zhǎng)期預(yù)測(cè)無(wú)效應(yīng)質(zhì)量濃度(PNEC)為1 ng/L,這意味著水生環(huán)境中的EEQ值>1 ng/L時(shí),可能會(huì)導(dǎo)致一些魚類的生殖問(wèn)題[32]。說(shuō)明三峽庫(kù)區(qū)消落帶沉積物可能具有較強(qiáng)的雌激素活性,并且會(huì)對(duì)一些水生生物造成健康風(fēng)險(xiǎn)。

為明晰環(huán)境雌激素效應(yīng)在三峽水庫(kù)的分布規(guī)律,進(jìn)一步分析了最大樣品暴露質(zhì)量濃度(100 g/L)下雌激素活性的時(shí)空特征(見圖3)。消落帶沉積物相同暴露質(zhì)量濃度下,落干期樣品的雌激素活性均明顯低于淹水期(p<0.05,巫山樣點(diǎn)除外)。在天然河流、湖泊等水體中,當(dāng)水體稀釋作用減弱時(shí)通常會(huì)出現(xiàn)雌激素活性增強(qiáng)的現(xiàn)象[35],本研究結(jié)果與之相反,其原因是落干期(8月份)的溫度高于淹水期(4月),此時(shí)水環(huán)境中營(yíng)養(yǎng)物質(zhì)濃度通常也高于淹水期,因此微生物代謝活性也更強(qiáng)[36]。已有研究證明,微生物活性的增加能夠加速EDCs降解,E2在夏季的降解速度比春季快,從而導(dǎo)致春季的雌激素活性可能比夏季高[37]。此外,隨著淹水期水位升高水流速度減緩,水體自凈能力減弱,促使雌激素活性物質(zhì)在沉積物中的累積,從而使得淹水期沉積物具有較強(qiáng)的雌激素活性[38]。換言之,季節(jié)性水位變動(dòng)也伴隨著氣候溫度和水文條件的變化,是影響環(huán)境中雌激素活性的重要因素。盡管落干期沉積物未表現(xiàn)出明顯的效應(yīng)-劑量關(guān)系,但其仍然表現(xiàn)出一定的β-半乳糖苷酶誘導(dǎo)活性。巫山的提取物顯示出最強(qiáng)的雌激素活性,其相對(duì)于E2的效應(yīng)強(qiáng)度為34%,顯著高于奉節(jié)和高陽(yáng)(p < 0.05),其效應(yīng)強(qiáng)度分別為5.2%和5.6%(見圖3)。這一發(fā)現(xiàn)與他人研究一致,即在巫山采集的沉積物的雌激素活性高于庫(kù)區(qū)上游的萬(wàn)州[12]。可能的原因是巫山位于水庫(kù)的下游地區(qū),由于三峽大壩的阻隔作用,導(dǎo)致顆粒物在庫(kù)區(qū)下游沉積[30],一些具有雌激素活性的污染物吸附在顆粒上,隨后在下游積累,從而產(chǎn)生更強(qiáng)的雌激素活性。

2.3 沉積物中典型環(huán)境雌激素(EEs)含量分布

在8種典型雌激素中,只有雌酮(E1)和乙炔基雌二醇(EE2)2種被檢測(cè)到,分別為0.025~2.667 ng/g(EE2)和0.136 ng/g(E1)(見表2)。三峽庫(kù)區(qū)是我國(guó)重要的山地農(nóng)業(yè)區(qū)域,其中畜禽養(yǎng)殖在庫(kù)區(qū)中分布廣泛,由于缺乏污染控制設(shè)施,一些牲畜糞便未經(jīng)充分處理甚至未經(jīng)處理直排水體,導(dǎo)致在沉積物中檢測(cè)到E1和EE2[39]。此外,這2種雌激素穩(wěn)定性較高,尤其是EE2可以吸附在沉積物中并持續(xù)累積[40-41]。已有研究發(fā)現(xiàn)太湖中的E1為5.49~164 ng/g,EE2為4.32~184 ng/g [42]。在西班牙Cardener河沉積物中,E1的含量高達(dá)11.9 ng/g,EE2為 22.8 ng/g[43]。與其他地區(qū)的結(jié)果相比,本研究中三峽庫(kù)區(qū)的E1和EE2含量處于較低水平。

筆者發(fā)現(xiàn)除高陽(yáng)樣點(diǎn)外,其余樣點(diǎn)淹水期提取物中都檢測(cè)到EE2,其中奉節(jié)的含量最高,為2.667 ng/g。空間分布上,各采樣位點(diǎn)的EE2污染狀況相差較大,并未表現(xiàn)出明顯的流向變化趨勢(shì)或干支流差異,可能與位點(diǎn)附近人口密度及工農(nóng)產(chǎn)業(yè)分布差異相關(guān)[44],EE2是口服避孕藥的常見成分,在人口密集地區(qū)的污水處理廠廢水常常能檢測(cè)到,并最終進(jìn)入天然水環(huán)境[45],導(dǎo)致潛在的生態(tài)效應(yīng)。有研究表明,環(huán)境中96%的EE2來(lái)源于畜牧業(yè)糞便及尿液[46],奉節(jié)采樣點(diǎn)位于碼頭附近,人類活動(dòng)對(duì)水環(huán)境干擾較大,生活廢水可能是水環(huán)境中EE2的主要來(lái)源。落干期提取物均未檢出典型雌激素,這與雌激素效應(yīng)生物實(shí)驗(yàn)結(jié)果一致。本研究結(jié)果與三峽庫(kù)區(qū)嘉陵江段類固醇類雌激素的時(shí)間分布特性一致[47-48],落干期隨著水位降低,沉積物經(jīng)歷淹水-裸露的動(dòng)態(tài)過(guò)程,導(dǎo)致吸附于沉積物上的污染物發(fā)生解吸,釋放到其他環(huán)境介質(zhì)中[49]。此外,冬季大壩蓄水使得消落帶處于淹沒(méi)狀態(tài),流速較慢和水力停留時(shí)間長(zhǎng),有利于細(xì)顆粒物沉積,淹沒(méi)期沉積物含量比落干期高[50]。多數(shù)雌激素活性物質(zhì)疏水性較強(qiáng),容易吸附在細(xì)微顆粒物上,導(dǎo)致淹水期沉積物中雌激素物質(zhì)的含量高于落干期[51]。

2.4 典型雌激素對(duì)雌激素效應(yīng)的貢獻(xiàn)

為了確定三峽庫(kù)區(qū)中雌激素效應(yīng)的來(lái)源,通過(guò)皮爾遜相關(guān)測(cè)試分析了三峽庫(kù)區(qū)沉積物樣品基于1/EC50值的雌激素效應(yīng)與每種測(cè)試雌激素效應(yīng)物質(zhì)質(zhì)量濃度之間的相關(guān)性(見圖4)。

典型雌激素通常被認(rèn)為是造成環(huán)境雌激素效應(yīng)的主要物質(zhì),在低濃度下也可能產(chǎn)生較強(qiáng)的雌激素活性[52]。因此,通常雌激素活性隨著典型雌激素濃度的增加而增強(qiáng)[53-54]。然而,本研究中沉積物樣品所檢測(cè)到的2種典型雌激素與雌激素活性之間不存在明顯相關(guān)性,表明典型的環(huán)境雌激素不是三峽庫(kù)區(qū)沉積物中雌激素活性的主要來(lái)源。類似的結(jié)果也在底特律河沉積物中觀察到[55]。

本研究發(fā)現(xiàn)典型雌激素并非三峽庫(kù)區(qū)沉積物雌激素活性的主要貢獻(xiàn)物質(zhì),為進(jìn)一步明晰典型雌激素對(duì)環(huán)境樣品雌激素效應(yīng)解析的程度,根據(jù)檢測(cè)到的可疑雌激素的含量及其相對(duì)雌激素效力(REP)值計(jì)算了每個(gè)樣點(diǎn)的EEQchem,并與生物測(cè)定的EEQbio進(jìn)行對(duì)比(見表3)。E1和EE2在YES體系中的相對(duì)雌激素效力(REP)分別為0.053和0.17[56],所有樣品的理論雌激素活性(EEQchem)低于YES測(cè)定的雌激素活性(EEQbio),研究結(jié)果印證了非典型雌激素對(duì)其活性存在較大貢獻(xiàn)的可能[27]。EEQchem解釋了0%~29.46%的雌激素活性(見表3),在荷蘭的一項(xiàng)研究中,也發(fā)現(xiàn)已知雌激素的計(jì)算效力僅解釋了污水中20%的雌激素活性[57]。然而,也有研究報(bào)道檢測(cè)到的6種典型雌激素物質(zhì)可以解釋80%的雌激素效應(yīng)[58],一項(xiàng)有關(guān)沉積物的研究也發(fā)現(xiàn)大約67%的雌激素活性來(lái)源于已確定的化合物[59]。因此,典型雌激素物質(zhì)對(duì)三峽庫(kù)區(qū)沉積物的雌激素活性貢獻(xiàn)較低,其活性來(lái)源是未關(guān)注的非典型雌激素物質(zhì)。

典型雌激素對(duì)三峽庫(kù)區(qū)沉積物的雌激素活性貢獻(xiàn)很小,而雌激素活性的主要貢獻(xiàn)者仍然未知。有研究表明,由于污染物的類型越來(lái)越復(fù)雜,已知的內(nèi)分泌活性物質(zhì)可能無(wú)法解釋雌激素活性的來(lái)源[60]。對(duì)于大多數(shù)沉積物樣品,用生物測(cè)定法確定的EEQ值高于基于典型物質(zhì)的計(jì)算效應(yīng)值,表明一些未知的化學(xué)物質(zhì)對(duì)樣品雌激素活性貢獻(xiàn)的普遍性[27]。因此,僅根據(jù)已知的化學(xué)品來(lái)估計(jì)環(huán)境樣品雌激素活性,將可能低估潛在環(huán)境雌激素污染風(fēng)險(xiǎn)。此外,目標(biāo)物質(zhì)靶向分析只能關(guān)注已知的典型環(huán)境雌激素,而多氯聯(lián)苯,包括苯并[α]芘(BaP)和苯并[α]蒽(BaA)在內(nèi)的幾種多環(huán)芳烴以及烷基酚等都顯示出一定的雌激素活性[61],其混合效應(yīng)不容忽視。筆者發(fā)現(xiàn),水位變動(dòng)等環(huán)境變化下,消落帶雌激素效應(yīng)和物質(zhì)差異顯著,這為水庫(kù)可持續(xù)管理策略提供了重要的數(shù)據(jù)支撐。

3 結(jié)? 論

1)三峽庫(kù)區(qū)中8種典型雌激素僅有雌酮(E1)和乙炔基雌二醇(EE2)被檢出,含量在0.025~2.667 ng/g范圍內(nèi),處于較低水平。

2)沉積物的雌激素活性在不同的水位時(shí)期,具有較大差異。淹水期的沉積物具有明顯的雌激素活性,其雌二醇當(dāng)量(EEQ)值為0.637~6.987 ng/g。落干期的沉積物樣品,均未表現(xiàn)出明顯的雌激素活性。水位波動(dòng)和環(huán)境變化可能會(huì)影響水環(huán)境中污染物的雌激素活性。

3)典型雌激素效應(yīng)物質(zhì)與雌激素活性間不存在明顯相關(guān)性,最多僅解釋了29.46%的雌激素活性,可能還存在尚未知的雌激素活性物質(zhì)。

參考文獻(xiàn)

[1]? Liew Z, Guo P F. Human health effects of chemical mixtures[J]. Science, 2022, 375(6582): 720-721.

[2]? Kabir E R, Rahman M S, Rahman I. A review on endocrine disruptors and their possible impacts on human health[J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 241-258.

[3]? Tan J S, Liu L H, Li F X, et al. Screening of endocrine disrupting potential of surface waters via an affinity-based biosensor in a rural community in the Yellow River Basin, China[J]. Environmental Science & Technology, 2022, 56(20): 14350-14360.

[4]? Adeel M, Song X M, Wang Y Y, et al. Environmental impact of estrogens on human, animal and plant life: a critical review[J]. Environment International, 2017, 99: 107-119.

[5]? Tran T K A, Yu R M K, Islam R, et al. The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs[J]. Environmental Pollution, 2019, 248: 1067-1078.

[6]? Pop A, Drugan T, Loghin F, et al. In vitro androgenic/anti-antiandrogenic effects of certain food additives and cosmetic preservatives[J]. Toxicology Letters, 2014, 229: S181.

[7]? Yoshida I, Ishida K, Yoshikawa H, et al. In vivo profiling of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced estrogenic/anti-estrogenic effects in female estrogen-responsive reporter transgenic mice[J]. Journal of Hazardous Materials, 2020, 385: 121526.

[8]? Tully D B, Cox V T, Mumtaz M M, et al. Six high-priority organochlorine pesticides, either singly or in combination, are nonestrogenic in transfected HeLa cells[J]. Reproductive Toxicology, 2000, 14(2): 95-102.

[9]? Pei S X, Jian Z J, Guo Q S, et al. Temporal and spatial variation and risk assessment of soil heavy metal concentrations for water-level-fluctuating zones of the Three Gorges Reservoir[J]. Journal of Soils and Sediments, 2018, 18(9): 2924-2934.

[10]? Wu Y H, Wang X X, Zhou J, et al. The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir, China[J]. Environmental Pollution, 2016, 214: 282-289.

[11]? Zhu L, Li X, Zhang C, et al. Pollutants release, redistribution and remediation of black smelly river sediment based on re-suspension and deep aeration of sediment[J]. International Journal of Environmental Research and Public Health, 2017, 14(4): 374.

[12]? Wang J X, Bovee T F H, Bi Y H, et al. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays[J]. Environmental Science and Pollution Research, 2014, 21(4): 3145-3155.

[13]? 朱毅, 田懷軍, 舒為群, 等. 長(zhǎng)江、嘉陵江(重慶段)源水有機(jī)提取物的類雌激素活性評(píng)價(jià)[J]. 環(huán)境污染與防治, 2003, 25(2): 65-67.

Zhu Y, Tian H J, Shu W Q, et al. Evaluation of the estrogenic activity of organic extracts from source water of Yangtze River and Jialing River in Chongqing section[J]. Environmental Pollution & Control, 2003, 25(2): 65-67.(in Chinese)

[14]? Li Y H, Huang S J, Qu X X. Water pollution prediction in the Three Gorges Reservoir area and countermeasures for sustainable development of the water environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(11): 1307.

[15]? Ding X W, Zhang J J, Jiang G H, et al. Early warning and forecasting system of water quality safety for drinking water source areas in Three Gorges Reservoir area, China[J]. Water, 2017, 9(7): 465.

[16]? Wang J X, Bi Y H, Pfister G, et al. Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD)[J]. Chemosphere, 2009, 75(8): 1119-1127.

[17]? Han C N, Zheng B H, Qin Y W, et al. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir[J]. Science of the Total Environment, 2018, 610/611: 1546-1556.

[18]? Bao Y H, Gao P, He X B. The water-level fluctuation zone of Three Gorges Reservoir: a unique geomorphological unit[J]. Earth-Science Reviews, 2015, 150: 14-24.

[19]? Hong S, Khim J S, Ryu J, et al. Two years after the Hebei spirit oil spill: residual crude-derived hydrocarbons and potential AhR-mediated activities in coastal sediments[J]. Environmental Science & Technology, 2012, 46(3): 1406-1414.

[20]? Cha J, Hong S, Kim J, et al. Major AhR-active chemicals in sediments of Lake Sihwa, South Korea: application of effect-directed analysis combined with full-scan screening analysis[J]. Environment International, 2019, 133: 105199.

[21]? Shao Y, Zhu L Y, Chen Z L, et al. Evidence of increased estrogenicity upon metabolism of Bisphenol F: elucidation of the key metabolites[J]. Science of the Total Environment, 2021, 787: 147669.

[22]? Mennillo E, Cappelli F, Arukwe A. Biotransformation and oxidative stress responses in rat hepatic cell-line (H4IIE) exposed to organophosphate esters (OPEs)[J]. Toxicology and Applied Pharmacology, 2019, 371: 84-94.

[23]? Lei B L, Xu J, Peng W, et al. In vitro profiling of toxicity and endocrine disrupting effects of bisphenol analogues by employing MCF-7 cells and two-hybrid yeast bioassay[J]. Environmental Toxicology, 2017, 32(1): 278-289.

[24]? Ma M, Li J, Wang Z J. Assessing the detoxication efficiencies of wastewater treatment processes using a battery of bioassays/biomarkers[J]. Archives of Environmental Contamination and Toxicology, 2005, 49(4): 480-487.

[25]? Wang J Y, Wang J P, Liu J S, et al. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms[J]. Environmental Pollution, 2018, 240: 396-402.

[26]? Prochazkova T, Sychrova E, Vecerkova J, et al. Estrogenic activity and contributing compounds in stagnant water bodies with massive occurrence of phytoplankton[J]. Water Research, 2018, 136: 12-21.

[27]? Wang L, Ying G G, Chen F, et al. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools[J]. Environmental Pollution, 2012, 165: 241-249.

[28]? Holbach A, Norra S, Wang L J, et al. Three gorges reservoir: density pump amplification of pollutant transport into tributaries[J]. Environmental Science & Technology, 2014, 48(14): 7798-7806.

[29]? Yin W P, Ji D B, Hu N S, et al. Three-dimensional water temperature and hydrodynamic simulation of Xiangxi River Estuary[J]. Advanced Materials Research, 2013, 726/727/728/729/730/731: 3212-3221.

[30]? Xu D Y, Gao B, Peng W Q, et al. Thallium pollution in sediments response to consecutive water seasons in Three Gorges Reservoir using geochemical baseline concentrations[J]. Journal of Hydrology, 2018, 564: 740-747.

[31]? Li J, Wang Z J, Ma M, et al. Analysis of environmental endocrine disrupting activities using recombinant yeast assay in wastewater treatment plant effluents[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(5): 529-535.

[32]? Wang L, Ying G G, Zhao J L, et al. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools[J]. Environmental Pollution, 2011, 159(1): 148-156.

[33]? Zhao J L, Ying G G, Yang B, et al. Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays[J]. Environmental Toxicology and Chemistry, 2011, 30(10): 2208-2215.

[34]? Hashimoto S, Horiuchi A, Yoshimoto T, et al. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan[J]. Archives of Environmental Contamination and Toxicology, 2005, 48(2): 209-216.

[35]? Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175: 22-29.

[36]? Chen Z B, Zhou Z Y, Peng X, et al. Effects of wet and dry seasons on the aquatic bacterial community structure of the Three Gorges Reservoir[J]. World Journal of Microbiology and Biotechnology, 2013, 29(5): 841-853.

[37]? Jürgens M D, Holthaus K I E, Johnson A C, et al. The potential for estradiol and ethinylestradiol degradation in English Rivers[J]. Environmental Toxicology and Chemistry, 2002, 21(3): 480-488.

[38]? Lei K, Lin C Y, Zhu Y, et al. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: occurrence and risk assessment of mixtures[J]. Journal of Hazardous Materials, 2020, 389: 121891.

[39]? Zhang T, Ni J P, Xie D T. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area[J]. Environmental Science and Pollution Research, 2015, 22(21): 16453-16462.

[40]? Zhang C, Li Y, Wang C, et al. Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: a review[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(1): 1-59.

[41]? Aris A Z, Shamsuddin A S, Praveena S M. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review[J]. Environment International, 2014, 69: 104-119.

[42]? Wang Y H, Wang Q Y, Hu L F, et al. Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China[J]. Environmental Geochemistry and Health, 2015, 37(1): 147-156.

[43] ?de Alda M J L, Gil A, Paz E, et al. Occurrence and analysis of estrogens and progestogens in river sediments by liquid chromatography-electrospray-mass spectrometry[J]. Analyst, 2002, 127(10): 1299-1304.

[44]? 卓麗, 許榕發(fā), 石運(yùn)剛, 等. 重慶長(zhǎng)江流域水體中8種典型環(huán)境雌激素污染特征[J]. 生態(tài)毒理學(xué)報(bào), 2020, 15(3): 149-157.

Zhuo L, Xu R F, Shi Y G, et al. Estrogens in surface water of the Yangtze River in Chongqing section[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 149-157.(in Chinese)

[45]? Wang W F, Ndungu A W, Wang J. Monitoring of endocrine-disrupting compounds in surface water and sediments of the Three Gorges Reservoir region, China[J]. Archives of Environmental Contamination and Toxicology, 2016, 71(4): 509-517.

[46]? 李寧健, 張慶華, 張曙琳, 等. 環(huán)境內(nèi)分泌干擾物雌激素的微生物降解研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2023, 50(4): 1591-1606.

Li N J, Zhang Q H, Zhang S L, et al. Microbial degradation of estrogens in environmental endocrine disruptors[J]. Microbiology China, 2023, 50(4): 1591-1606.(in Chinese)

[47]? 李顯芳, 印成, 萬(wàn)巧玲, 等. 三峽庫(kù)區(qū)重慶段水體中有機(jī)污染物的研究進(jìn)展[J]. 環(huán)境與健康雜志, 2019, 36(7): 649-654.

Li X F, Yin C, Wan Q L, et al. Research progress on organic contaminants in Chongqing reach of Three Gorges Reservoir region[J]. Journal of Environment and Health, 2019, 36(7): 649-654.(in Chinese)

[48]? 胡碧波, 陽(yáng)春, 張智, 等. 嘉陵江典型城市江段的類固醇雌激素分布特性[J]. 中國(guó)給水排水, 2011, 27(21): 54-58.

Hu B B, Yang C, Zhang Z, et al. Distribution characteristics of steroid estrogens in a typical urban section of Jialing River[J]. China Water & Wastewater, 2011, 27(21): 54-58.(in Chinese)

[49]? 胡鶯. 三峽水庫(kù)消落帶水—土體系中典型環(huán)境雌激素的遷移轉(zhuǎn)化研究[D]. 重慶: 重慶交通大學(xué), 2019.

Hu Y. Study on migration and transformation of typical environmental estrogen in water-soil system in water-level-fluctuating zone of three gorges reservoir[D].Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)

[50]? 趙岱寅, 蔡茂雪, 張代鈞, 等. 三峽庫(kù)區(qū)消落帶表層沉積物生物標(biāo)志物時(shí)空變化與來(lái)源分析[J]. 中國(guó)環(huán)境科學(xué), 2022, 42(6): 2810-2820.

Zhao D Y, Cai M X, Zhang D J, et al. Temporal and spatial variation and source analysis of biomarkers in surface sediments in the water-level-fluctuating zone of the Three Gorges Reservoir Region[J]. China Environmental Science, 2022, 42(6): 2810-2820.(in Chinese)

[51]? 陳斌, 馬偉芳, 曾凡剛, 等. 類固醇雌激素在土壤與沉積物中的污染水平及其吸附研究進(jìn)展[J]. 環(huán)境工程, 2014, 32(7): 131-137.

Chen B, Ma W F, Zeng F G, et al. Review of steroid estrogens contamination and sorption in soil and sediment[J]. Environmental Engineering, 2014, 32(7): 131-137. (in Chinese)

[52]? Duong C N, Ra J S, Cho J, et al. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries[J]. Chemosphere, 2010, 78(3): 286-293.

[53]? Chou P H, Lin Y L, Liu T C, et al. Exploring potential contributors to endocrine disrupting activities in Taiwans surface waters using yeast assays and chemical analysis[J]. Chemosphere, 2015, 138: 814-820.

[54]? Müller A K, Leser K, K?mpfer D, et al. Bioavailability of estrogenic compounds from sediment in the context of flood events evaluated by passive sampling[J]. Water Research, 2019, 161: 540-548.

[55]? Michallet-Ferrier P, A?t-A?ssa S, Balaguer P, et al. Assessment of estrogen (ER) and aryl hydrocarbon receptor (AhR) mediated activities in organic sediment extracts of the Detroit River, using in vitro bioassays based on human MELN and teleost PLHC-1 cell lines[J]. Journal of Great Lakes Research, 2004, 30(1): 82-92.

[56]? Luo J P, Lei B L, Ma M, et al. Identification of estrogen receptor agonists in sediments from Wenyu River, Beijing, China[J]. Water Research, 2011, 45(13): 3908-3914.

[57]? Murk A J, Legler J, van Lipzig M M H, et al. Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays[J]. Environmental Toxicology and Chemistry, 2002, 21(1): 16-23.

[58]? Neale P A, Ait-Aissa S, Brack W, et al. Linking in vitro effects and detected organic micropollutants in surface water using mixture-toxicity modeling[J]. Environmental Science & Technology, 2015, 49(24): 14614-14624.

[59]? Schmitt S, Reifferscheid G, Claus E, et al. Effect directed analysis and mixture effects of estrogenic compounds in a sediment of the River Elbe[J]. Environmental Science and Pollution Research, 2012, 19(8): 3350-3361.

[60]? Kirchnawy C, Hager F, Osorio Piniella V, et al. Potential endocrine disrupting properties of toys for babies and infants[J]. PLoS One, 2020, 15(4): e0231171.

[61]? Song M Y, Xu Y, Jiang Q T, et al. Measurement of estrogenic activity in sediments from Haihe and Dagu River, China[J]. Environment International, 2006, 32(5): 676-681.

(編輯? 鄭潔)

主站蜘蛛池模板: 欧美国产日本高清不卡| 国产精品久久久久婷婷五月| 欧美中文字幕一区二区三区| 亚洲69视频| 99精品这里只有精品高清视频| 国产亚洲视频中文字幕视频| 久久视精品| 成人在线天堂| 幺女国产一级毛片| 全午夜免费一级毛片| 四虎永久免费地址| 国产真实自在自线免费精品| 午夜国产精品视频| 国产精品视频a| 中文字幕亚洲乱码熟女1区2区| 欧美区国产区| 欧美亚洲中文精品三区| 久久精品女人天堂aaa| 一区二区三区毛片无码| 亚洲成年人片| 全部毛片免费看| 国产高潮视频在线观看| 色综合久久无码网| 日韩美一区二区| 女人爽到高潮免费视频大全| 免费 国产 无码久久久| 国产成人精品一区二区| 久久99精品国产麻豆宅宅| 成年人福利视频| 欧美国产精品不卡在线观看| 欧美精品v欧洲精品| 亚洲人成亚洲精品| 18黑白丝水手服自慰喷水网站| 亚洲首页在线观看| 免费一级α片在线观看| 色天天综合| 综合色天天| 高清视频一区| 免费黄色国产视频| 青青草国产一区二区三区| 91色爱欧美精品www| 日本国产精品| 99中文字幕亚洲一区二区| 高清色本在线www| 在线观看国产黄色| 日本精品一在线观看视频| a级毛片网| 青青草国产免费国产| 97色婷婷成人综合在线观看| 久久情精品国产品免费| 亚洲精品免费网站| 国产18页| 日本影院一区| 天堂在线www网亚洲| 女人18毛片久久| 亚洲 欧美 偷自乱 图片| 无码中文AⅤ在线观看| 女人爽到高潮免费视频大全| 日本欧美视频在线观看| 国产伦片中文免费观看| 国产精品成人免费视频99| 国模沟沟一区二区三区| 欧美综合成人| 国产精品毛片一区| 91成人在线观看视频| 精品一区二区三区四区五区| 美女免费黄网站| 永久在线播放| 国产流白浆视频| 91丝袜乱伦| 91福利在线看| 亚洲国产综合第一精品小说| 国产高清在线丝袜精品一区| 国产成人免费| 99伊人精品| 亚洲国内精品自在自线官| 亚洲天堂视频在线观看免费| 高潮毛片免费观看| 999国产精品永久免费视频精品久久 | 福利姬国产精品一区在线| 国产成人高清在线精品| 国产白浆在线观看|