




摘要:針對近似匹配過程易受數(shù)據(jù)冗余性、 異構(gòu)成分等的影響, 提出了基于并行小波算法的多模態(tài)數(shù)據(jù)近似匹配模型。該模型首先采用并行小波算法剔除多模態(tài)數(shù)據(jù)中的噪聲, 避免噪聲對匹配過程產(chǎn)生影響; 其次采用張量分解的聚類算法將不同相似度的數(shù)據(jù)劃分到不同類簇中, 以消除不同類簇的數(shù)據(jù)差異度; 最后將預(yù)處理后的數(shù)據(jù)輸入到基于空間方向近似性的數(shù)據(jù)匹配模型中, 通過計算參考數(shù)據(jù)與待匹配數(shù)據(jù)之間的空間方向近似度、 編輯距離完成多模態(tài)數(shù)據(jù)的近似匹配。實驗結(jié)果表明, 所提方法的匹配查準(zhǔn)率高、 查全率高、 匹配時間短。
關(guān)鍵詞:雙輸入-輸出的并行結(jié)構(gòu); 數(shù)據(jù)差異度; 張量分解; 空間方向近似性; 匹配相似度
中圖分類號: TP312 文獻標(biāo)志碼: A
Construction of Multimodal Data Approximate MatchingModel Based on Parallel Wavelet Algorithm
LIU Lili
(School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150036, China)
Abstract:Approximate matching is an indispensable link in the normal use of multimodal data technology, but the process of approximate matching is vulnerable to data redundancy, heterogeneous components and other issues. Firstly, parallel wavelet algorithm is used to eliminate the noise in multimodal data to avoid the impact of noise on the matching process. Secondly, tensor decomposition clustering algorithm is used to divide the data with different similarity into different clusters to eliminate the data difference of different clusters. Finally, the preprocessed data is input into the data matching model based on spatial direction approximation, The approximate matching of multimodal data is completed by calculating the spatial direction approximation and editing the distance between the reference data and the data to be matched. The experimental results show that the proposed method has high matching precision, high recall and short matching time.
Key words:dual input output parallel architecture; data difference; tensor decomposition; spatial direction approximation; matching similarity
0 引 言
隨著大數(shù)據(jù)時代的來臨, 多模態(tài)數(shù)據(jù)技術(shù)逐漸走進人們的視野, 被廣泛應(yīng)用于人機交互、 故障檢測[1]、 數(shù)據(jù)整合等領(lǐng)域。為創(chuàng)造效率與安全相互平衡的運行環(huán)境, 人們對多模態(tài)數(shù)據(jù)的近似匹配方法提出了更高的要求, 不僅要求匹配的效率高, 還要求其具備優(yōu)良的準(zhǔn)確性。其關(guān)鍵就是對多模態(tài)數(shù)據(jù)的近似匹配技術(shù)做出升級和優(yōu)化[2]。由實驗證明和理論依據(jù)可知, 研究多模態(tài)數(shù)據(jù)的近似匹配方法具有重要意義。
魏暉等[3]首先采用動態(tài)時間算法獲取多模態(tài)訓(xùn)練數(shù)據(jù)與測試數(shù)據(jù)之間的相似特征, 得到動態(tài)-靜態(tài)數(shù)據(jù)的匹配關(guān)系式, 其次采用中點矢距算法構(gòu)建多模態(tài)數(shù)據(jù)的相似關(guān)系模型, 最后將匹配關(guān)系式輸入到關(guān)系模型中, 完成多模態(tài)數(shù)據(jù)的近似匹配。……