







摘要:為提高去噪圖像質量, 提出了一種基于二維變分模態分解算法(2D-VMD: Two Dimensional Variational Mode Decomposition)和巴氏距離(BD: Bhattacharyya Distance)的結合算法用于圖像去噪。該算法首先使用2D-VMD算法將圖像分解為若干個固有模態函數(IMFs: Intrinsic Mode Functions); 然后使用BD測量每個IMF的概率密度函數(PDF: Probability Density Function)與原圖像PDF間的幾何距離, 區分出信號主導IMF和噪聲主導IMF; 最后將噪聲主導IMF經小波閾值去噪后與信號主導IMF重構, 得到去噪圖像。將算法應用于醫學圖像去噪, 理論分析和仿真結果表明, 2D-VMD和BD結合算法與全變分模型(ROF: Rudin Osher Fatemi)算法、 中值濾波和小波閾值濾波相比, 其在主觀和客觀評價方面都具有較好的去噪效果, 有效地提高了去噪圖像質量。
關鍵詞:二維變分模態分解; 巴氏距離; 概率密度函數; 醫學圖像去噪
中圖分類號: TN911.73 文獻標志碼: A
Medical Image Denoising Algorithm Based on 2D-VMD and BD
MA Yuanyuan1, CUI Changcai2, MA Liyuan2, DONG Hui3
(1. Global Drug Development Department, Beijing Novartis Pharmaceutical Company Limited, Beijing 100000, China;2. Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China;3. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China)
Abstract:In order to improve the quality of denoised images, an algorithm based on 2D-VMD (Two Dimensional Variational Mode Decomposition) and BD (Bhattacharyya Distance) is proposed for image denoising. Firstly, the algorithm uses 2D-VMD algorithm to decompose the image into several IMFs (Intrinsic Mode Functions), and then BD is used to measure the geometric distance between the PDF (Probability Density Function) of each IMF and the original image to distinguish the signal-dominated IMF and the noise-dominated IMF. Finally, the denoising noise-dominated IMF through wavelet threshold denoising and the signal-dominated IMF are reconstructed to obtain the denoised image. The proposed algorithm is applied to medical images. The theoretical analysis and simulation result show that, compared with ROF (Rudin Osher Fatemi) algorithm, median filter and wavelet threshold algorithm, the algorithm of combining 2D-VMD and BD has better denoising effect in both subjective and objective evaluation, and it effectively improves the quality of denoised images.
Key words:two dimensional variational mode decomposition(2D-VMD); bhattacharyya distance(BD); intrinsic mode functions; medical image denoising
0 引 言
在臨床應用中, 很多成像醫療檢測設備, 如胸部X射線成像(Chest X-ray: Chest Radiography Medical Image)、 核磁共振成像(MRI: Magnetic Resonance Imaging)和電子計算機斷層掃描(CT: Computed Tomography)可為影像醫師的診斷提供幫助[1]。由于醫學圖像在采集和傳輸過程中很容易受到醫療檢測設備內部和周圍環境中噪聲的影響, 從而影響圖像的分辨率, 降低圖像質量, 給影像醫師的診斷工作帶來困難。醫學圖像降噪可增強圖像視覺效果, 輔助影像醫生精確地進行診斷和治療[2-3]。目前, 已經存在很多醫學圖像降噪方法, 包括中值濾波、 維納濾波和均值濾波, 但這3種方法都會使濾波后的圖像存在細節缺失和邊緣模糊的現象[4]。并且中值濾波和均值濾波會隨著核大小逐漸變大使圖像變得更加模糊。
Terrien等[5]提出了經驗模態分解(EMD: Empirical Mode Decomposition)算法用于信號分解處理。……