










摘要:針對隱私風(fēng)險的不確定性決策問題, 在直覺模糊和集對分析理論基礎(chǔ)上, 對隱私確定-不確定建立信息權(quán)重的集對關(guān)系, 給出了直覺模糊集對(IFSPA: Intuitionistic Fuzzy Set Pair Analysis)算子, 定義了直覺模糊集對的相關(guān)概念、 運算、 性質(zhì)、 期望值、 大小排序和幾種直覺模糊集對信息集結(jié)算子: 直覺模糊集對加權(quán)平均(IFSPAWA: Intuitionistic Fuzzy Set Pair Analysis Weighted Average)算子、 直覺模糊集對加權(quán)幾何(IFSPAWG: Intuitionistic Fuzzy Set Pair Analysis Weighted Geometric)算子、 直覺模糊集對有序加權(quán)(IFSPAOWA: Intuitionistic Fuzzy Set Pair Analysis Ordered Weighted Average)算子、 直覺模糊集對有序加權(quán)幾何(IFSPAOWG: Intuitionistic Fuzzy Set Pair Analysis Ordered Weighted Geometric)算子、 直覺模糊集對混合集結(jié)(IFSPAHA: Intuitionistic Fuzzy Set Pair Analysis Hybrid Aggregation)算子、 直覺模糊集對混合幾何(IFSPAHG: Intuitionistic Fuzzy Set Pair Analysis Hybrid Geometric)算子及這些算子相關(guān)性質(zhì)。在此基礎(chǔ)上, 分析了隱私風(fēng)險多屬性決策的直覺模糊集對信息集結(jié)方法, 并通過算例驗證了該方法的可行性和合理性。
關(guān)鍵詞:隱私風(fēng)險; 直覺模糊; 集對分析; 多屬性決策; 集結(jié)算子
中圖分類號: TP18; C934; O223 文獻(xiàn)標(biāo)志碼: A
Privacy Risk Decision-Making Based on IntuitionisticFuzzy Set Pair Aggregation Method
WANG Wanjun1a,1b,2
(1a. School of Digital Media; 1b. VR Centre, Lanzhou University of Arts and Science, Lanzhou 730000, China;2. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, China)
Abstract:For the uncertainty decision-making problem of privacy risk, based on the theories of intuitionistic fuzzy and set pair analysis, a set pair relationship of information weights is established for privacy certainty amp; uncertainty. The intuitionistic fuzzy set pair operator is provided, and the relevant concepts, operations, properties, expected values, size ranking, and several intuitionistic fuzzy set pair information aggregation operators are defined, including Intuitionistic fuzzy set pair analysis operators, intuitionistic fuzzy set pair analysis weighted average operators, intuitionistic fuzzy set pair analysis weighted geometric operators, intuitionistic fuzzy set pair analysis ordered weighted average operators, intuitionistic fuzzy set pair analysis ordered weighted geometric operators, intuitionistic fuzzy set pair analysis hybrid aggregation operators, intuitionistic fuzzy set pair analysis hybrid geometric operators and their related properties. On this basis, the intuitionistic fuzzy set pair information aggregation method for privacy risk multi-attribute decision-making is analyzed, and it shows that the proposed method has feasibility and rationality.
Key words:privacy risk; intuitionistic fuzzy; set pair analysis; multi-attribute decision making; aggregate operators
0 引 言
1965年, 自Zadeh[1]在經(jīng)典Cantor集合的基礎(chǔ)上提出了模糊集(Fuzzy Sets)理論后, 其在社會、 經(jīng)濟(jì)等領(lǐng)域得到了廣泛關(guān)注和應(yīng)用。Fuzzy集是定義在[0,1]區(qū)間上通過隸屬度描述事物模糊不確定性的, 其只能描述單值的不充分模糊性, 但無法全面、 準(zhǔn)確地刻畫模糊的更多屬性。為克服Fuzzy集的缺陷和不足, 1986年, Atanassov[2]從模糊的另一角度考慮, 給出了用隸屬度和非隸屬度表示模糊的直覺模糊集(Intuitionistic Fuzzy Sets)理論, 直覺模糊集同時通過隸屬函數(shù)和非隸屬函數(shù)對事物的模糊性進(jìn)行兩個方面描述, 比Fuzzy集更準(zhǔn)確、 有效地刻畫了模糊屬性。由于直覺模糊處理信息的靈活和實用性, 得到了較好的發(fā)展和應(yīng)用[3-12]。1993年, Gau等[13]分析了Fuzzy集, 并引入了真隸屬度和假隸屬度對Fuzzy理論進(jìn)行了擴(kuò)充和推廣, 提出了Vague集理論。……